		Standard De 27.43			
				e ^(V)	thought to the state of the sta
				gesigh Sesigh S	13rd
			QUOTO SEA TO		tand
				resily harris	
		and	/seg)	Zer ^{XX}	\x\do, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		Ctande	\(\lambda_{i}\)\(\rangle_{i}\)\(\ran	alo bet	the points to the fold to the state of the s
Pasta Fac	ctory	27.43	19.17	30.1%	16254
r usta r u	otor y	27.43	10.17	30.170	10254
Apartmer	nt	25.22	13.24	47.5%	59895
•		<u>l</u>		I	
Townhou	ses:				
A1 & A2	N	14.51	11.39	44.0%	9297
	Е	14.37	11.54	44.5%	
	S	14.51	11.4	44.0%	
	W	14.32	11.58	44.7%	
			11.4775	44.3%	_
В		26.79	14.48	45.9%	10011
C1 & C2	N	15.49	14.5	48.3%	4057
	Е	15.84	14.16	47.2%	
	S	15.64	14.35	47.9%	
	W	15.75	14.24	47.5%	
			14.3125	47.7%	
D		35.83	20.07	44.0%	2083
	_				
E1, E2 &		13.11	11.79	47.3%	7941
	Е	13.48	11.43	45.9%	
	S	13.04	11.86	47.6%	
	W	13.56	11.34	45.5%	
			11.605	46.6%	
F		23.35	13.19	48.0%	9043
Γ_					
G		26.82	14.26	46.8%	6632
					1
Н		23.31	12.06	48.2%	15825
T_					<u> </u>
<u>I</u>		25.77	14.97	41.9%	9978

Tassafaronga Housing, Oakland, CA

Predicted Energy Use Summary

1/20/2015 Date:

20517

Job#

LEED ID	NAME	Type (REC S)	Address	No. Units	Gross Square Footage	Occupied Square footage (bldg code)	Heated	% Area Cooled (t24)	Laundry Hookups (Units)	design EUI, Title24 (kbtu/sf-yr)	common area lighting and plug (kWh-yr) see "kWh calcs"	common area lighting and plug (kbtu/sf-yr)	Total EUI*	PV (kbtu/yr)	PV per sf	net EUI*	% below T24-2005	National Median (RECS)	Title 24 equivlant reduction (30%)^	Estimated Equivalent Reduction^	2030 50% Target (Western US)	2030 60% Target (Western US)
PHASE 1						_																
5528	Apartment Bldg	5+ unit	930 84th Avenue	60	103,893	98946	59,895	4,041	12.0	13.24	234,570	7.70	20.94	492,829	4.74	16.20	48%	50.0	35.00	18.38	20	16
5523	TH A1	5+ unit	901 84th Avenue	6	9,855	9,386	9,297		6.0	11.48						11.48	44%	50.0	35.00	19.50	20	16
5525	TH A2	5+ unit	925 84th Avenue	6	9,816	9,349	9,297		6.0	11.48						11.48	44%	50.0	35.00	19.50	20	16
5524	TH B	5+ unit	916 83rd Avenue	7	10,582	10,078	10,011		7.0	14.48						14.48	46%	50.0	35.00	18.94	20	16
5530	TH C1	2-4 uni	935 85th Avenue	3	4,296	4,091	4,057		3.0	14.31						14.31	48%	58.0	40.60	21.23	23	19
5526	TH C2	2-4 uni	926 83rd Avenue	3	4,301	4,096	4,057		3.0	14.31						14.31	48%	58.0	40.60	21.23	23	19
5536	TH D	2-4 uni	8310 F Street	2	2,187	2,083	2,083		2.0	20.07						20.07	44%	58.0	40.60	22.74	23	19
5529	TH E1	5+ unit	933 85th Avenue	6	8,370	7,971	7,941		6.0	11.61						11.61	47%	50.0	35.00	18.69	20	16
5527	TH E3	5+ unit	929 85th Avenue	6	8,568	8,160	7,941		6.0	11.61						11.61	47%	50.0	35.00	18.69	20	16
5531	TH E2	5+ unit	946 83rd Avenue	6	8,568	8,160	7,941		6.0	11.61						11.61	47%	50.0	35.00	18.69	20	16
5532	TH F	5+ unit	966 83rd Avenue	7	9,596	9,139	9,043		7.0	13.19						13.19	48%	50.0	35.00	18.20	20	16
PHASE 2																						

I IIAGE	<u>-</u>																			
5537	Pasta Factory	5+ unit 1001 83rd Avenue	20	24,010	22,867	16,254	3.0	19.17	800,386	7.56	26.73	185,972	7.75	18.98	30%	50.0	35.00	24.47	20	16
5534	TH G	5+ unit 996 82nd Avenue	5	6,993	6,660	6,632	5.0	14.26						14.26	47%	50.0	35.00	18.62	20	16
5533	TH H	5+ unit 975 83rd Avenue	12	16,567	15,930	15,825	12.0	12.06						12.06	48%	50.0	35.00	18.13	20	16
5535	THI	5+ unit 997 82nd Avenue	8	10,517	10,016	9,978	8.0	14.97						14.97	42%	50.0	35.00	20.34	20	16
		total areas		238,119	226,932	######														

10% new 90% 81,908 renovation total GSF w/o garage Common area 21,107 20%

Totals/Averages	Total occupied area	views**	within 15 ft of window**	ability to turn lights off***	design EUI, Title24 (kbtu/sf-yr)	weighting factor	Total EUI*	net EUI	% below T24-2005	% below National Median^	
apartment	98946	78%	62%	78%	13.24	0.44	20.94	16.20	48%	63.60	
pasta factory	22,867	81%	65%	81%	19.17	0.10	26.73	18.98	30%	51.0%	
townhouse average	105,119	70%	70%	70%	13.49	0.46	13.49	13.49	46%	62.2%	
total weighted by area	226932	74%	67%	74%			18.1	15.23	45%	62%	

light power dens	sity	apartment	pasta	total area	a	
	watts/sf	area (sf)	area (sf)	area (sf)	weighting fac	ctor
office	1.2	962	1961	2923	0.12	
	1.1	399		399	0.02	
	1	1987	2318	4305	0.17	
service/storage	0.7	2003	928	2931	0.12	
corridor	0.6	13199	1330	14529	0.58	
		18550		25087	0.75	wt. avg. lpd

total weighted by area

*excludes residential electric loads

** areas approximated using take-offs from plans

*** no daylight autonomy modeling was done. Numbers reflect areas within 25 ft of a window.

*COTE Top Ten equivalency Title 24-2005 = 30% better than national median

Job# 20-07546

Date: 3/26/2009

Apartment Building House Loads - Estimated Energy Usage

"1H" House Estimated Energy Usage

		Use		
		adjustme	Hours	Energy/D
Item	Power	nt	used/day	ay (KWh)
TRASH COMPACTOR	3.062	1	1	3.062 KWh
IRRIGATION CONTROLLER	1	1	1	1 KWh
GENERAL OUTLETS	9	0.5	1	4.5 KWh
OFFICE COPIES	1.5	1	1	1.5 KWh
OFFICE OUTLETS	3	1	8	24 KWh
OFFICE LIGHTING	1.6	1	8	12.8 KWh
ACCESS PANEL	1	0.1	24	2.4 KWh
FIRE ALARM PANEL	1	0.1	24	2.4 KWh
RESCUE COMM PANEL	1	0.1	24	2.4 KWh
SECURITY PANEL	1	0.1	24	2.4 KWh
CCTV	1	1	6	6 KWh
DOOR ENTRY CONTROLLER	1	0.1	24	2.4 KWh
ELECTRIC RANGE	8.5	1	1	8.5 KWh
HOOD EXHAUST	0.5	1	1	0.5 KWh
REFRIGERATOR	1	1	6	6 KWh
KITCHEN OUTLET	0.54	0.5	1	0.27 KWh
KITCHEN APPLIANCE	2	1	1	2 KWh
EXTERIOR LIGHTING	6	1	8	48 KWh
GARAGE LIGHTING	8	0.875	24	168 KWh
CORRIDOR LIGHTING	2.3	0.875	24	48.3 KWh
AUTOMATIC DOOR	1	1	4	4 KWh

TOTAL/DA\ 350.43 KWh

"2H" House Estimated Energy Usage

		Use			
		adjustme	Hours	Energy/D	
Item	Power	nt	used/day	ay (KWh)	
WASHER & DRYER	15	1	2	30	KWh
IRRIGATION CONTROLLER	1	1	1	1	KWh
GENERAL OUTLETS	5.5	0.5	1	2.75	KWh
GENERAL LIGHTING	2.5	0.875	24	52.5	KWh
SF-3.4 & 5	1	1	24	24	KWh
FC-9 & 10	4	1	8	32	KWh

TOTAL/DA\ 142.25 KWh

"3H" House Estimated Energy Usage

	Use			
	adjustme	Hours	Energy/D	
Power	nt	used/day	ay (KWh)	
15	1	2	30	KWh
4.5	0.5	1	2.25	KWh
2.5	0.875	24	52.5	KWh
1	1	24	24	KWh
0.5	1	24	12	KWh
	15 4.5 2.5 1	adjustme Power nt 15	Power nt used/day 15 1 2 4.5 0.5 1 2.5 0.875 24 1 1 24	Power nt Hours used/day used/day Energy/D ay (KWh) 15 1 2 30 4.5 0.5 1 2.25 2.5 0.875 24 52.5 1 1 24 24

TOTAL/DA 120.75 KWh

"MH" House Estimated Energy Usage

		Use			
		adjustme	Hours	Energy/D	
Item	Power	nt	used/day	ay (KWh)	_
EF-1 & 2	12	1	8	96	KWh
FC-1 THRU 9	3	1	8	24	KWh
HP-1 THRU 5	10	1	8	80	KWh
BOILERS	7	1	8	56	KWh
SF-1 & 2	0.6	1	24	14.4	KWh
SOLAR CONTROL PANEL	1	0.1	24	2.4	KWh
CA-1 & 2	0.5	1	8	4	KWh
P-1 THRU P-3	9	1	8	72	KWh

TOTAL/DA\ 348.8 KWh

Estimated Elevator Energy Usage

		Use		
		adjustme	Hours	Energy/D
Item	Power	nt	used/day	ay (KWh)
ELEVATOR (25HP)	18.675	1	2	37.35 KWh

TOTAL/DA\ 37.35 KWh

TOTAL/DA 999.58 KWh TOTAL/MC 29987.46 KWh ANNUAL: 359849.5 KWh

TOTAL/DA 651.58 KWh TOTAL/MC 19547.46 KWh

ANNUAL: 234569.5 KWh

without T24 loads

Kilowatt Hour Calculation

Job#

20-07546

with T24 with T24

Date: #######

Pasta Factory House Loads - Estimated Energy Usage

"WH" House Estimated Energy Usage

		Use			
		${\it adjustme}$	Hours	Energy/D	
Item	Power	nt	used/day	ay (KWh)	_
IRRIGATION CONTROLLER	1	1	1	1	KWh
GENERAL OUTLETS	7	0.5	1	3.5	KWh
WORKROOM LIGHTING	1.8	1	8	14.4	KWh
WORKROOM OUTLETS	2	1	8	16	KWh
CORRIDOR LIGHTING	2.3	0.875	24	48.3	KWh
ACCESS PANEL	1	0.1	24	2.4	KWh
FIRE ALARM PANEL	1	0.1	24	2.4	KWh
CCTV	1	1	5	5	KWh
SECURITY PANEL	1	0.1	24	2.4	KWh
WASHER & DRYER	7.5	1	2	15	KWh
PUMPS	3	1	8	24	KWh
BOILERS	3	1	8	24	KWh

TOTAL/DA\ 158.40 KWh

Estimated Elevator Energy Usage

ltem	Use adjust Power nt	me Hours	Energy/D ay (KWh)	
ELEVATOR (25HP)	18.675	1 2		
		TOTAL/DAY	37.35 KWh	
		TOTAL/DA	195.75 KWh	
		TOTAL/M(ANNUAL:	5872.5 KWh 70470 KWh	
		TOTAL/DA	147.75 KWh	without T24 loads
		TOTAL/M(ANNUAL:	4432.5 KWh 53190 KWh	

LEED FOR HOMES EA CREDIT 10 - Renewable Energy in California

title	24	stand	lard	design	•

	APT	A1 & A2	В	C1 & C2	D	E1, E2, E3	F	G	н	- 1	PASTA
space heating	8.02	8.26	9.21	9.63	10.49	7.39	7.21	8.2	6.73	7.36	6.36 kbtu/sf-yr
space cooling	3.61	3.39	3.45	3.51	3.35	2.85	3.5	3.16	3.08	3.274	4.41 kbtu/sf-yr
DHW	12.47	12.62	12.49	14.31	18.02	13.06	13.02	13.61	12.27	13.62	14.84 kbtu/sf-yr
								G	GRAND TOTAL 276.774 kbtu/sf-yr		
conditioned f.a.	59895	9297	10011	4057	2083	7,941	9043	6632	15825	9978	16254
conditioned i.u.	33033	3237	10011	4037	2003	7,541	3043				
								G	GRAND TOTAL 151016 sf		

276.774 kbtu/sf-yr *	151016 sf	41,797,302 kbtu/yr

					r.
41797302.38 kbtu/yr	*1000 btu/kbtu	*1kwh/3413btu	12,2	246,499 kwh/yr	space heating, cooling & DHW

lighting & appliances

		3,940				
5.273	151,016	796,307				
-568.7	100%	-569				
-151,016	100%	-151,016				
		648,663	* 0.519	=	336,656 kwh/yr	lighting & appliances

ANNUAL ELECTRIC CONSUMPTION IN TITLE 24 STANDARD DESIGN HOME	12,583,155 kwh/yr
--	-------------------

TOTAL ANNUAL ELECTRICITY SUPPLIED BY PV	198.937 kwh/vr	
ANNUAL ELECTRICITY SUPPLIED BY PV SYSTEM - pasta factory	54,503 kwh/yr	15969.24
ANNUAL ELECTRICITY SUPPLIED BY PV SYSTEM - Apartment	144,434 kwh/yr	42318.78

PERCENT ANNUAL ELECTRIC LOAD SUPPLIED BY PV SYSTEM		2%
LEED POINTS, UNDER EA 1	2% %/5	0 points

	Run Initiation Time: 04/16/09 08:36:37	Run Code: 1239896197	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASA	Page:1 of 5

Tassafaronga A1 & A2 Project Title			Date	4/16/2009
FENESTRATION SURFACES		True Cond.		Location/
# Type Are	ea U-Factor ¹ SHGC	² Azm. Tilt Stat. Glaz	ing Type	Comments
1 Window Front (N) 287.0 2 Window Front (N) 72.0 3 Window Left (E) 605.0 4 Window Rear (S) 323.0 5 Window Rear (S) 72.0 6 Window Right (W) 607.0	0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC 0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC	0 90 New Double N 90 90 New Milgard G 180 90 New Milgard G 180 90 New Double N	Classic Low-E Vinyl Non Metal Clear Classic Low-E Vinyl Classic Low-E Vinyl Non Metal Clear Classic Low-E Vinyl	Building Building Building Building Building Building Building
1. Indicate source either from NFRC or Table		ther from NFRC or Table 116B.		
# Exterior Shade Type	<u>vvindow</u>	Overhang	Left Fin	Right Fin
# Exterior Shade Type 1 Bug Screen 2 Bug Screen 3 Bug Screen 4 Bug Screen 5 Bug Screen 6 Bug Screen	SHGC Hgt. Wd. 0.76 0.76 0.76 0.76 0.76 0.76 0.76	Len. Hgt. LExt. RExt.	Dist. Len. Hg	it. Dist. Len. Hgt.
THERMAL MASS FOR HIGH I Area Type (sf)	MASS DESIGN Thick.Heat Inside (in.) Cap. Cond. R-Val		Condition Locat Status Comr	
PERIMETER LOSSES Type Length Slab Perimeter 348	Insulation R-Val. Location None No Insulation	JA IV Reference	Condition Status Comm	nents
EnergyPro 4.4 by EnergySoft	Run Initiation Time: 04/1 User Number: 1005	6/09 08:36:37 Run Code Job Number: 040	:: 1239896197 33TASA	Page: 2 of 5

Certificate Of Compliance: Residential (Part 3 of 4) Tassafaronga A1 & A2 4/16/2009 Project Title Date **HVAC SYSTEMS** Heating Minimum Cooling Minimum Condition Thermostat Location Status Type Eff Type Eff Type Res HVAC Combined Hydronic see below No Cooling 13.0 SEER New Setback **HVAC DISTRIBUTION** Condition **Ducts** Duct Duct Location Heating Cooling R-Value Status Tested? Location Res HVAC Baseboard Ducted Attic 6.0 New No Hydronic Piping Pipe Pipe Insul. Diameter System Name Length Thick. (3) 199K Boilers w/375 Gal S.T. 0.50 0.50 WATER HEATING SYSTEMS Rated Tank Energy Tank Insul. Water Heater Standby Cap. Condition Factor R-Value # in Input System Name Type Distribution or RE Loss (%) Ext. Status Syst. (Btu/hr) (gal) 0.0 (3) 199K Boilers w/375 Gal S.T. Large Gas Central System 375 New 2.10% Multi-Family Central Water Heating Details Hot Water Pump Hot Water Piping Length (ft) Add 1/2" In Plenum Outside Buried Insulation Control Type Temperature Standard No **REMARKS COMPLIANCE STATEMENT** This certificate of compliance lists the building features and specifications needed to comply with Title 24, Parts 1 and 6 of the California Code of Regulations, and the administrative regulations to implement them. This certificate has been signed by the individual with overall design responsibility. The undersigned recognizes that compliance using duct design, duct sealing, verification of refrigerant charge and TXVs, insulation installation quality,

and building envelope sealing require installer testing and certification and field verification by an approved HERS rater.

Designer or Owner (per Business & Professions Code)	Documentation Author		
Name:	Name: Chuck Clemons		
Title/Firm: David Baker + Partners	Title/Firm: Energy Calc Co.		
Address: 461 Second St., Loft 127	Address: 45 Mitchell Blvd. Suite 16		
San Francisco, CA 94107	San Rafael, CA 94903		
Telephone: (415) 896-6700 Lic. #:	Telephone: (415)457-0990		
(signature) (date	te) (signature)	(date)	
Enforcement Agency			
Name: Title/Firm:	_		
Address:	- -		
Telephone:	_		
(signature) (date	te)		

	Run Initiation Time: 04/16/09 08:36:37	Run Code: 1239896197	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASA	Page: 3 of 5

(Part 4 of 4) **CF-1R**

Tassafaronga A1 & A2	4/16/2009	9
Project Title D	Date	
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise contents.	•	
based on the adequacy of the special justification and documentation submitted.	Plan	Field
Compliance using the Four Cardinal Orientation approach has been used. Project can be built in any Orientation.		
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.		
The DHW System "(3) 199K Boilers w/375 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.		
The DHW System "(3) 199K Boilers w/375 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).		
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must inclu	ıde	
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate v	ventilation.	
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.		Field
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insula	Plan	Field
This building has credit for insulation Quality installation. A certified HERS rater must visually verify the installation of all insula	ation.	
This building has tight construction with reduced infiltration and a target blower door test range between 3652 and 11929 CFM pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.	at 50	
WARNING - If this building tests below 3652 CFM at 50 pascals, the house must either be provided with a ventilation opening t increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.	that will	

 Run Initiation Time:
 04/16/09 08:36:37
 Run Code:
 1239896197

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASA
 Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga A1 & A2

DATE 4/16/2009

F	Rate: PG&E A	-1		Fuel Type: Electricity							
		STANDARD			PROPOSED			MARGIN			
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)		
Jan	125	1	36	37	0	16	88	1	19		
Feb	92	11	28	33	0	15	59	11	13		
Mar	80	7	26	37	0	16	43	7	10		
Apr	133	13	37	59	9	21	74	4	16		
May	318	17	78	143	12	39	175	5	39		
Jun	202	19	52	86	11	27	116	8	26		
Jul	105	12	31	47	7	18	57	4	13		
Aug	68	10	23	37	0	16	31	10	7		
Sep	389	21	94	101	10	30	289	11	64		
Oct	337	19	82	100	11	30	237	9	52		
Nov	121	12	35	38	2	16	83	10	18		
Dec	118	1	34	37	0	16	81	1	18		
Year	2,088	21	\$ 555	754	12	\$ 262	1,334	9	\$ 294		

Rate: PG&E G-NR1 Fuel Type: Natural Gas

Ė	itale. I Oul O	1414.1					Tuer Type: Natural Gas				
		STANDARD			PROPOSED			MARGIN			
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)		
Jan	332	269	270	192	172	156	140	97	114		
Feb	220	222	178	128	148	104	91	74	74		
Mar	187	198	152	111	138	90	76	60	62		
Apr	138	162	112	85	98	69	53	63	43		
May	131	194	106	82	129	67	49	64	40		
Jun	108	177	88	73	128	59	35	49	28		
Jul	101	30	82	71	17	58	30	13	24		
Aug	100	29	81	70	17	57	29	13	24		
Sep	96	29	78	67	17	55	28	12	23		
Oct	113	147	92	75	101	61	38	46	31		
Nov	182	217	148	107	147	87	75	70	61		
Dec	313	240	255	186	158	151	128	82	104		
Year	2,019	269	\$ 1,642	1,247	172	\$ 1,014	772	97	\$ 628		

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	754 kWh	12 kW	\$ 262	\$ 0.03/sqft	\$ 0.35/kWh
Natural Gas	1,247 therms	172 kBtu/hr	\$ 1,014	\$ 0.11/sqft	\$ 0.81/therm

Total \$ 1,276 \$ 0.14/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASA Page:5 of 5

(Part 1 of 4) **CF**

Tass	afarong	a Apartı	ments											4/16	/2009	
Project	Title	а л.ра. и											Da			
	kland ^{Address}												Bu	ilding Permit #		
•		Co								(4	415)457-0990				
	gy Calc entation Au	thor							_	,	Telep	phone	Pla	n Check/Date		
Compli	gyPro ance Metho	d							CF	Ciir	Mate	e Zone 03 ate Zone	Fie	ld Check/Date		
TDV				Standa			Propos			Com						
(kBtu/	sf-yr)		_	Desig			Desig				ırgin					
-	Heating			8.02			6.4				.57					
-	Cooling			3.61			0.5 0.1				.07					
Fans	stic Hot V	Notor		0.95 12.47			5.9	_			.85 .49					
Pumps		vater		0.17			0.1				.00					
ı unip	Totals			25.22			13.2		=		.98					
Perce		than Sta		_0	_		10.2	•		47.						
0.00		UILD		CON	/IPL	IES	- HE	R:	S N			ICATIO	N F	REQUIR	ED	
Buildi	ng Type:		Single F			Addition						ditioned Floo			 59,895	ft ²
			Multi Fa	-	_		j + Add/.	Δlt				loor Area:	/I AI	ea.	n/a	
Ruildi	na Front	Orientati		y		الاس) 32 1W) 32					_	or Area:			13,111	
	_	Orientati	011.		•	Natura	_					rade Area:			13,111	ft ²
Fuel T	• •					ivatur	ai Gas						4.		13,718 9.7	
	tration:	40 000 f	+ 2				0.40				_	eiling Heigh				IL
	Area:	10,003 f	ι-		Avg. U		0.46					f Dwelling Ur	nits:		60.00	
	latio:	16.7%		_	SHGC	:	0.43		N	lumb	er o	f Stories:			3	
		IE INFOR	MATIO						#					Thermostat		'ent
Zone N	Name			<u> </u>	Floor A		Volume	_	_Ur			Zone Type		Туре	Hgt.	Area
HP1 HP2						l,454 l,438	31,98 31,63		1.4	-		Conditioned Conditioned		Setback Setback	8	
HP3						669	7,35		0.0			Conditioned	_ :	Setback	8	
HP4		-4050				480	5,28	30	_0.4	48_		Conditioned		Setback	8	n/a
_	UE SURF		II Foo	Insul		Act.	Til+			Cond				Loootion	. / Camar	m a m t a
Type Roof	Frame Wood	Area 1.176	U-Fac. _0.036	R-30		Azm.	Tilt 0	Y / X	$\overline{}$	Stat	us	JA IV Refere	nce	Location 139 Community		nents
Wall	None	365			R-0.0	0	90	X		lew		13-D5		139 Community		
Wall	Wood		_0.074	R-19_		0	90	X		lew		09-A5		139 Community		
Wall Wall	_ Wood _ Wood	467_ 299	_0.074	R-19 R-19	_R-0.0 _R-0.0	330 270	90	-		lew lew		09-A5 09-A5		139 Community		
Roof	Wood	1,184			R-0.0	0	0	X X X		lew		02-A9		136/37 Rcptn/L		
Wall	Wood		_0.102		_R-0.0	0		X		lew		09-A3		136/37 Rcptn/L	,	
Wall Wall	None Wood	800	_0.820_		_R-0.0 _R-0.0	0		\Rightarrow		lew lew		13-D5 09-A5		136/37 Rcptn/L 136/37 Rcptn/L		
Wall	Wood	,	0.074		R-0.0	240		X		lew		09-A5		136/37 Rcptn/L		
Roof	Wood	480	_0.036	R-30_	_R-0.0	0	0	X X X X		New		02-A9		Conf Rm/AsstM	1gr/Mgr	
Wall	Wood		_0.074		_R-0.0	320	90	X		lew		<u>09-A5</u>		Conf Rm/AsstM		
Wall Wall	_ Wood		_0.074		_R-0.0	330	90	\Rightarrow		lew		09-A5 09-A5		Conf Rm/AsstM		
Wall Wall	_ <u>Wood</u> _ Wood		0.074		_R-0.0 _R-0.0	240		X		lew lew		09-A5		Conf Rm/AsstM Conf Rm/AsstM		
Roof	Wood		0.036		_R-0.0	0		X		lew		02-A9		Lounge	igi/ivigi	
Wall	Wood	420	_0.102		_R-0.0	0		X X X		lew		09-A3		Lounge		
Wall	Wood		_0.074		_R-0.0	330	90	X		lew		.09-A5		Lounge		
Wall	Wood		0.074		_R-0.0	60		X X		lew		09-A5		Lounge		
Wall Wall	Wood Wood		_0.074		_R-0.0 _R-0.0	240_		女		lew lew		09-A5 09-A3		Lounge 1st Floor Res. I	Jnits	
Door	None		1.450		R-0.0	0		X X X		lew		28-A1		1st Floor Res. U		
Wall	Wood	754			R-0.0	327	90	X		lew		09-A5		1st Floor Res. I	Jnits	
Wall	Wood		_0.074		_R-0.0	57		X		lew		09-A5		1st Floor Res. I		
Wall	Wood	1,267	_0.074		_R-0.0	147		X		lew		.09-A5	_	1st Floor Res. l	Jnits	
							4/16/09 1	0:41	1:35			Code: 1239903	695			
E	nergyPro 4.4	by EnergySo	oft	U:	ser Numb	er: 1005				Job N	Numbe	r: 0403TASAR			Page	e:1 of 9

	Run Initiation Time: 04/16/09 10:41:35	Run Code: 1239903695	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASAR	Page: 2 of 9

	ssafaro	onga	Apar	rtment	S										Dat	Δ.	4	/16/	2009		
		TION	CLIDE	-4050											Dai						
	NESTRA	ATION	SUKI	ACES			1	,	, Tru			Cond	-				L	ocatio	on/		
#	Туре			Are	a L	J-Facto	or'	SHGC	Azı	m. T	ilt	Stat.	Glaz	ing Type			C	omm	ents		
1_	Window	Front	(N)	120.0				_116-B	0_		New			etal Clear						ity Roor	
2_	Window Window	Front Front	(N) (NW)	<u>49.0</u> 60.0		NFRC		<u>NFRC</u> _ NFRC	330		New New			Classic Lov Classic Lov						nity Roor nity Roor	
<u>3</u> 4	Window	Front	(NW)	128.0		116-A		116-B	330		New			etal Clear	v-⊏ VII	ПУІ				ity Roor	
5	Window	Right	(W)	61.0		NFRC			270		New			Classic Lov	v-E Vii	nyl				ity Roor	
6_	Window	Front		104.0		NFRC			330		New			Classic Lov	v-E Vii	nyl				/Lobby	
7_	Window	Right	(SW) (NW)	85.0 102.0		116-A 116-A			240 320		New New		ngle M	<u>etal</u> etal Clear						/Lobby tMgr/Mg	
<u>8</u> 9	Window Window	Front Front	(NW)	68.0		NFRC			330		New			Classic Lov	v-E \/ii	nvl				tMgr/Mg	
10	Window	Left	(NE)	4.0		NFRC			60		New			Classic Lov						tMgr/Mc	
11	Window	Front	(NW)	63.0	0.390	NFRC	0.37	NFRC	330		New	M	ilgard C	Classic Lov	v-E Vii	nyl		Loung			
<u>12</u>	Window	Right	(SW)	35.0		NFRC			240		New			Classic Lov				Loung			
<u>13</u> 14	Window Window	Front Front	(NW) (NW)	194.0 24.0		NFRC 116-A			327 327		New New	M	ilgard (Classic Lov Ion Metal (V-E VII	nyl			oor Res		
15	Window	Left	(NE)	579.0		NFRC			57		New			Classic Lov		nyl			or Res		
16	Window	Left	(NE)	72.0		116-A			57		New			Ion Metal (or Res		
<u>17</u>	Window	Rear	(SE)	689.0		NFRC			147	-	New			Classic Lov		nyl			or Res		
<u>18</u> 19	Window Window	Rear Right	(SE) (SW)	96.0 99.0		116-A NFRC			147 237		New New			lon Metal (Classic Lov		n d			oor Res		
	dicate source	Ū						source eit					-	JIASSIC LUV	V-∟ VII	шуш		15111	JUI NES	o. Offics	
							maicate	source en	ner irom	NFRU	oria	ible 116	Б.								
INT	ERIOR	AND E	EXTER	RIOR SH	HADIN	IG	Wind	wob		С)verh	nang			Left I	Fin			Ri	ight Fir	n
#	Exter	ior Sha	ade Ty	ype	SHG	С	Hgt.	Wd.	Ler			LExt.	RExt.	Dist.			Hgt.	_	Dist.	Len.	Hgt.
1_	Bug Scr				0.7											_		_			
<u>2</u> <u>3</u>	Bug Scr					<u>76</u>										_		-			
3	Bug Scr Bug Scr				0.7	<u>76</u> 76			-							_		-			-
<u>4</u> <u>5</u> 6	Bug Scr					76										_		-			
6	Bug Scr	een			0.											_		_			
7/8	Bug Scr				0.		0.0	0.0						0.0	00	0.0	0	-	0.0	0.0	0
9	Bug Scr Bug Scr				0.7									-		_		-			-
10	Bug Scr				0.											_		-			
11	Bug Scr				0.											_		_			
12	Bug Scr				0.7											_		-			
13 14	Bug Scr Bug Scr				0.7											_		-			
15	Bug Scr				0.											_		-			
16	Bug Scr				0.													_			
17	Bug Scr				0.											_		_			
<u>18</u>	Bug Scr Bug Scr				0.7									-		_		-			
	ERMAL		FOR	HIGH N Area (sf)	//ASS Thick.	DESI (Inside . R-Val.	JA		Refe	rence	<i>.</i>	Condit Statu			catior				
	crete, Hea	vvweial	ht	13,111	. ,		0.98		25-A1					New	-				Jnits / F	Exterior	Mass
	0.010, 1.100	,																		-/	
Тур				_ength			nsula Locat	ion		A IV I	Refe	rence		Condit Statu		Cc	catior	nts	Dann		
	Perimete Perimete			75 92		No Ins			26-A1 26-A1					New New			6/37 Ro		Room bbv		
	Perimete			1		No Ins			26-A1					New		Off	133/SC	/RR's			
	Perimete			42		No Ins			26-A1					New		Cor	nf Rm/	AsstM	gr/Mgr		
Slab	Perimete	r		612	None	No Ins	ulation	<u> </u>	26-A1					New		<u>1st</u>	Floor I	Res. U	Inits		
	EnergyP	ro 4.4 by	y Energy	/Soft	Run	Initiatio User No		ne: 04/16 1005	<u>/09 10:</u>	41:35				: 1239903 3TASAR	8695				Pa	ge:3 of 9)

	issafard ject Title	onga	Apa	rtment	S									Date	9	4/16	/2009	9	
FE	NESTR <i>A</i>	TION	SURI	FACES					т.,		Con	d				1 000	tion/		
#	Туре			Are	ea U	J-Fact	or ¹	SHGC	² Azr	n. Tilt	Con Stat		ing Type)		Loca	ments		
	Window	Right		48.0				_116-B	237	90 Nev			lon Metal		. d			s. Units	
<u>21</u> 22	Window Window	Front Front	(NW) (NW)	<u>571.0</u> 192.0				NFRC _ 116-B	327 327	90 Nev 90 Nev			Classic Lov Ion Metal		ıyı			<u>es. Units</u> es. Units	
23	Window	Left	(NE)	775.0				NFRC	57	90 Nev			Classic Lo		ıyl			es. Units	
24	Window	Left	(NE)	120.0				116-B	57	90 Nev			Ion Metal					es. Units	
<u>25</u>	Window	Rear	(SE)	795.0				NFRC	147	90 Nev			Classic Lo		ıyl	_		es. Units	
<u>26</u>	Window	Rear	(SE)	<u>192.0</u>				<u>116-B</u>	147	90 Nev			lon Metal		. d			es. Units	
<u>27</u> <u>28</u>	Window Window	Right Right	(SW) (SW)	922.0 96.0				NFRC _ _116-B _	237 237	90 Nev 90 Nev			Classic Lov Ion Metal		ıyı			es. Units es. Units	
	Window	Front	` '	657.0				NFRC	<u>237</u> . 327	90 Nev			Classic Lo		ıvl			es. Units	
30	Window	Front	(NW)	120.0		116-A		116-B	327	90 Nev			lon Metal					es. Units	
31	Window	Left	(NE)	850.0	0.390	NFRC	0.37	NFRC	57	90 Nev			Classic Lov		ıyl	3rd F	Floor Re	es. Units	
<u>32</u>	Window	Left	(NE)	72.0				_116-B	57_	90 Nev			lon Metal					es. Units	
33	Window	Rear	(SE)	832.0				NFRC _	147	90 Nev			Classic Lo		ıyl			es. Units	
<u>34</u> 35	Window Window	Rear Right	(SE) (SW)	<u>144.0</u> 721.0				<u>116-B</u> <u>NFRC</u>	<u>147</u> 237	90 Nev 90 Nev			lon Metal Classic Lo		o d			es. Units es. Units	
_	Window	Right	. ,	264.0				_116-B _	237	90 Nev			lon Metal		ıyı			es. Units	
_	-																		
— 1. Ind	dicate source	e either fi	rom NFR	C or Table	——— e 116A.	2.	Indicate	e source eit	her from	NFRC or 1	able 11	6B.							
INT	TERIOR .	AND E	EXTER	RIOR S	HADIN	G	Win	dow		Ovo	rhang			Left F	in			Right Fi	n
#	Exter	ior Sh	ade T	vne	SHG	C	Hgt.	Wd.	Len		LExt.	RExt.	Dist			-	Dist.	Len.	Hgt.
20	Bug Scr		<u> </u>	уро	0.7											·-			
21	Bug Scr				0.7	76													
<u>22</u>	Bug Scr				0.7											_			
<u>23</u>	Bug Scr				0.7											_			
24	Bug Scr				0.7											_			
25 26	Bug Scr				0.7											_			
27	Bug Scr Bug Scr				0.7											_			
28	Bug Scr				0.7											_			
29	Bug Scr				0.7										_	_			
30	Bug Scr				0.7								-			_			-
31	Bug Scr				0.7	76													
32	Bug Scr				0.7											_			
33	Bug Scr				0.7											_			
34	Bug Scr				0.7								-			_			
$\frac{35}{36}$	Bug Scr				0.7								-			_			
30	Bug Scr	een			0.7	76										_			
_																_			
ΙH	ERMAL	WASS	FOR	_	MASS Thick.	_	GN	Inside					Condi	tion	Location	on/			
Тур	эе			(sf)	(in.)	Cap.	Cond	l. R-Val.	J۵	IV Ref	erenc	e:e	Statu		Comm				
	DIMETE	D I 61	2050											4:		,			
Typ	RIMETE	K LOS		Length	R-\/al		Insula Loca		.14	NV Ref	erenc	·e	Condi Statu		Location Comm				
' y			! 	Longui	- vai						5.5110		Jiait			101113			
_																			
	EnergyP	ro 4.4 h	y Enera	/Soft	Run		on Tin lumber:	ne: 04/16 1005	/09 10:4			in Code:	: 123990 : 3TASAR	3695			P	age: 4 of 9	 9
	37.	. ~.	,91	,								,					<u> </u>		

EnergyPro 4.4 by EnergySoft

User Number: 1005

	aronga Apar	tments							16/2009	
Project Title	e						Date	е		
HVAC SY	STEMS									
		<u>H</u> eating	Minimum	Cooli			Minimum	Condit	_	<u>T</u> hermostat
Location		Type	Eff	Туре			Eff	Status		Гуре
HP1		Split Heat Pur			leat Pump		14.0 SEER	<u>New</u>		Setback
HP2 HP3		Split Heat Pui Split Heat Pui			leat Pump leat Pump		13.0 SEER 13.0 SEER	New New		Setback Setback
		Opiit i icat i ui	<u>0.7011011</u>	Орши	icat i unip		10.0 OLLIN	ivow		JCIDACK
HVAC DI	STRIBUTION			Duct			Duct (Condition	Duct	c
Location		Heating	Cooling	Locat	ion		R-Value S		Test	-
HP1		Ducted	Ducted	Attic				lew	Yes	
HP2		Ducted	Ducted	Attic				lew	Yes	
HP3		<u>Ducted</u>	Ducted	Attic			4.2N	lew	Yes_	
Hydronic	Piping	Din a Din a	la a col							
System N		Pipe Pipe Length Diame								
(2) 3200K F	Boilers w/440		0.50 <u>0.50</u>							
Gál S.T.										
WATER H	HEATING SYS	TEMS			Datad	Table				Tauli laasil
		Water Hea	ater	# in	Rated Input	Tank Cap.	Condition	Energy	Standby	Tank Insul. R-Value
System N	lame	Type	Distribution		(Btu/hr)	(gal)	Status	or RE	Loss (%)	Ext.
(2) 3200K F	Boilers w/440 Gal		Central System	1	3,200,000		New	0.90	2.10%	0.0
(=) =======					-,,					
Multi-Fam		ter Heating Detail t Water Pump		Hot W	ater Pipin	a Lena		.dd 1/2"		
Control	110	# HF	P Type	In Pleni				sulation		
Temperatu	re	1	0.1 Standard		0			No		
	· • • • • • • • • • • • • • • • • • • •									
REMARK		uaro footago is loss t	han 10% of the building	total By	ando this me	akas tha	non rocidonti	al area a m	inority occur	ancy which m
be modeled	·	multi family lowrise re	Ü	iolai. By	code tilis ili	akes tile	non residenti	ai aica a iii	штотку оссар	ancy which hi
00110111		4F14								
	ANCE STATE		res and specifications ne	- d- d t	ماهانید درا محمد	F:41a O.4 F	Danta 1 and C	of the Calife	maia Cada af	
Regulations The undersi	, and the administ gned recognizes t	rative regulations to in hat compliance using	nplement them. This certiduct design, duct sealing and certification and fie	ificate has	s been signe ion of refrige	d by the rant cha	individual with	overall des	sign responsi	
Designer o	r Owner (per Bus	iness & Professions (Code)	Docu	mentation A	Author				
Name:				Name	e: Chu	ck Clemo	ons			
Title/Firm:	David Baker + Pa	irtners		Title/	Firm: Ener	gy Calc	Co.			
Address:	461 Second St., L	_oft 127		Addr	ess: <u>45 M</u>	litchell B	lvd. Suite 16			
	San Francisco, C	A 94107		_	San	Rafael, (CA 94903			
Telephone:	(415) 896-6700	Lic. #:		_ Tele	ohone: <u>(415</u>)457-099	90			
(signature)			(date) (cian	ature)					(date)
(Signature)			(uate) (Sigir	ature)					(uate)
Enforcemer Name:	nt Agency			_						
Title/Firm:				_						
Address:				_						
Telephone:				-						
(signature)			(date	<u>)</u>						
. 5 /		B 1. 101	ation Time: 04/16/09 10	<u> </u>	D 1	Na ala - 44	239903695			

Job Number: 0403TASAR

Page:5 of 9

Tassafaronga Project Title	a Apartmen	ts						4/ ate	16/2009	
HVAC SYSTEM	S									
Location		Heating Type		Minimum Eff	Cooling Type		Minimur Eff	n Conditi Status		Thermostat Type
HP4		Split Heat F		6.70 HSPF	Split Heat I	Pump	13.0 SEE	R New		Setback
HP5		Combined I		see below	Split Heat I		13.0 SEE			Setback
Hydronic Baseboar	<u>d</u>	Combined I	Hydronic	see below	No Cooling		13.0 SEE	R New		Setback
HVAC DISTRIB	UTION				Duct		Duct	Condition	Duc	is
Location		Heating		Cooling	Location		R-Value	Status	Test	ed?
HP4		Ducted		Ducted	Attic		4.2	New	Yes	
HP5		Ducted		Ducted	Attic		4.2	New	Yes	
Hydronic Baseboar	<u>d</u>	Baseboard	<u> </u>	Ducted	Attic		6.0	New	Yes_	
Hydronic Piping	Pipe			Insul.						
System Name	Lengt	h Diam 	neter	Thick.						
WATER HEATI	NG SYSTEMS	Water H	eater		Rate # in Inpu			Energy on Factor	Standby	Tank Insul. R-Value
System Name		Туре	D	istribution	Syst. (Btu	ı/hr) (gaİ) Status	or RE	Loss (%)	Ext.
Multi-Family Cer			ails		Hot Water	Dining Lor	ath (ft)	Add 1/2"		
Control	Hot Wate		HP .	Туре	Hot Water In Plenum	Outside	Buried	Insulation		
Control			IIF	туре		———				
REMARKS Non residential area be modeled with the majority occ		-			total. By code	this makes t	he non reside	ntial area a m	inority occup	pancy which m
COMPLIANCE: This certificate of co Regulations, and the The undersigned red and building envelop	mpliance lists the eadministrative recognizes that combe sealing require	gulations to pliance usir installer tes	implem ng duct o sting and	ent them. This cert design, duct sealing	ificate has bee , verification of eld verification	n signed by t refrigerant c by an approv	he individual w harge and TX\ ed HERS rate	vith overall des √s, insulation i	ign respons	bility.
Designer or Owner	(per Business &	Profession	s Code)			ation Author				
Name:	okon i Destre				_ Name:	Chuck Cle				
	aker + Partners	,			-	Energy Ca		•		
	cond St., Loft 127				_ Address:		Blvd. Suite 1	0		
	ncisco, CA 94107				- 		I, CA 94903			
Telephone: (415) 89	96-6700	Lic. #:			_ i elepnone	e: <u>(415)457-(</u>)990			
(signature)				(date	(signature)				(date)
Enforcement Agent Name: Title/Firm: Address:	су				- - -					
Telephone:					-					
(signature)				(date)					
		Run In	itiation	Time: 04/16/09 10	0:41:35	Run Code:	1239903695			
EnergyPro 4.4	by EnergySoft			per: 1005		Number: 0403			Pa	ge:6 of 9

(Part 4 of 4) **CF-1R**

Tassafaronga Apartments	4/16/2009
Project Title	Date

Special Features and Modeling Assumptions

The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted.

based on the adequacy of the special justification and documentation submitted.	Plan	Field
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.		
The DHW System "(2) 3200K Boilers w/440 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.		
The DHW System "(2) 3200K Boilers w/440 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n.	
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n.	
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n.	
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n.	
The HVAC System "HP5" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		

HERS Required Verification

Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.

HERS provider using approved testing and/or verification methods.	Plan	Field
The HVAC System "HP1" incorporates HERS verified Duct Leakage. Target leakage is calculated and documented on the CF-4R.		
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
This building has tight construction with reduced infiltration and a target blower door test range between 571 and 1866 CFM at 50		
pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.		
WARNING - If this building tests below 571 CFM at 50 pascals, the house must either be provided with a ventilation opening that will		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		
The HVAC System "HP2" incorporates HERS verified Duct Leakage. Target leakage is calculated and documented on the CF-4R.		
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
This building has tight construction with reduced infiltration and a target blower door test range between 565 and 1845 CFM at 50		
pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.		
WARNING - If this building tests below 565 CFM at 50 pascals, the house must either be provided with a ventilation opening that will		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		
The HVAC System "HP3" incorporates HERS verified Duct Leakage. Target leakage is calculated and documented on the CF-4R.		
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
This building has tight construction with reduced infiltration and a target blower door test range between 263 and 858 CFM at 50		
pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.		
WARNING - If this building tests below 263 CFM at 50 pascals, the house must either be provided with a ventilation opening that will		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		
The HVAC System "HP4" incorporates HERS verified Duct Leakage. Target leakage is calculated and documented on the CF-4R.		
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		

Ru	<u>n Initiation Time: 04/16/09 10:41</u>	:35 Run Code: 1239903695	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASAR	Page:7 of 9

(Part 4 of 4) **CF-1R**

Tassafaronga Apartments Project Title 4/16 Date	<u>3/2009</u>	<u> </u>
written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies		
	Plan	Field
Project Title Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted. operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation. The HVAC System "Hydronic Baseboard" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating. This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation. HERS Required Verification tems in this section require field testing and/or verification by a certified home energy rater under the supervision of a MERS required ventilation require field testing and/or verification path of the supervision of a MERS required ventilation to the supervision of the supe		
The HVAC System "Hydronic Baseboard" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n.	
Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a		
	Plan	Field
, , , , , , , , , , , , , , , , , , ,		
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
· · · · · · · · · · · · · · · · · · ·		-
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		

 Run Initiation Time:
 04/16/09 10:41:35
 Run Code:
 1239903695

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASAR
 Page:8 of 9

ECON-1

PROJECT NAME
Tassafaronga Apartments

DATE
4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN	
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)
Jan	2,211	19	495	3,558	16	791	-1,347	3	-296
Feb	1,397	66	316	2,492	14	556	-1,095	52	-241
Mar	1,048	42	239	2,228	11	498	-1,180	31	-260
Apr	1,098	78	250	1,786	34	401	-688	44	-151
Мау	2,194	104	491	1,683	59	378	511	44	112
Jun	1,393	119	315	596	65	139	796	54	175
Jul	578	74	135	89	4	28	489	70	108
Aug	415	65	99	83	1	26	333	64	73
Sep	2,398	134	536	359	54	87	2,039	80	449
Oct	2,089	115	468	875	63	201	1,214	51	267
Nov	1,311	68	297	2,104	14	471	-792	54	-174
Dec	2,137	21	478	3,700	41	822	-1,563	-19	-344
Year	18,270	134	\$ 4,117	19,553	65	\$ 4,399	-1,283	68	\$ -282

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED			MARGIN	
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)
Jan	1,859	1,560	1,511	952	1,049	774	907	512	737
Feb	1,246	1,312	1,013	585	910	476	662	402	538
Mar	1,112	1,205	904	491	864	399	621	341	505
Apr	844	1,007	686	362	359	295	482	648	392
May	811	1,185	659	345	739	281	465	446	378
Jun	680	1,054	553	321	807	261	359	246	292
Jul	645	212	524	309	97	251	336	114	273
Aug	636	209	517	305	96	248	331	113	269
Sep	614	208	499	294	96	239	320	113	260
Oct	701	834	570	320	409	260	382	424	310
Nov	1,059	1,301	861	462	911	376	597	390	485
Dec	1,782	1,434	1,449	920	984	748	861	450	700
Year	11,990	1,560	·	5,666	1,049	\$ 4,606	6,324	512	\$ 5,140

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	19,553 kWh	65 kW	\$ 4,399	\$ 0.07/sqft	\$ 0.22/kWh
Natural Gas	5,666 therms	1,049 kBtu/hr	\$ 4,606	\$ 0.08/sqft	\$ 0.81/therm

Total \$ 9,005 \$ 0.15/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASAR Page:9 of 9

 Run Initiation Time: 04/16/09 10:29:46
 Run Code: 1239902986

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASB
 Page: 1 of 5

Tassafaronga B Project Title			Date	4/16/2009
FENESTRATION SURFACES		True Cond.		Location/
# Type Are	ea U-Factor ¹ SHGC	² Azm. Tilt Stat. Glazi		Comments
1 Window Front (SE) 615.0 2 Window Front (SE) 48.0 3 Window Left (SW) 391.0 4 Window Left (SW) 48.0 5 Window Rear (NW) 568.0 6 Window Rear (NW) 48.0 7 Window Right (NE) 303.0 8 Window Right (NE) 48.0	0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.580 116-A 0.65 116-B	147 90 New Double N 237 90 New Milgard C 237 90 New Double N 327 90 New Milgard C 327 90 New Double N 57 90 New Milgard C	Classic Low-E Vinyl on Metal Clear	Building
Indicate source either from NFRC or Table		her from NFRC or Table 116B.		
# Exterior Shade Type	vviridow	Overhang	Left Fin	Right Fin
# Exterior Shade Type 1 Bug Screen 2 Bug Screen 3 Bug Screen 4 Bug Screen 5 Bug Screen 6 Bug Screen 7 Bug Screen 8 Bug Screen	SHGC Hgt. Wd. 0.76 0.76	Len. Hgt. LExt. RExt.	Dist. Len. Hgt.	Dist. Len. Hgt.
THERMAL MASS FOR HIGH M Area Type (sf)	MASS DESIGN Thick. Heat Inside (in.) Cap. Cond. R-Val.	JA IV Reference	Condition Location Status Commit	
PERIMETER LOSSES Type Length Slab Perimeter 428	Insulation R-Val. Location None No Insulation	JA IV Reference	Condition Location Status Common	
EnergyPro 4.4 by EnergySoft	Run Initiation Time: 04/16 User Number: 1005	/09 10:29:46 Run Code Job Number: 040	: 1239902986 3TASB	Page:2 of 5

	Run Initiation Time: 04/16/09 10:29:46	Run Code: 1239902986	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASB	Page: 3 of 5

(date)

Title/Firm: Address: Telephone:

(signature)

Tassafaronga B

(Part 4 of 4) **CF-1R**

4/16/2009

Project Title Date				
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted.	ne local			
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.		Field		
The DHW System "(3) 140K Boilers w/375 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.				
The DHW System "(3) 140K Boilers w/375 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).				
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.				
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include				
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n			
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field		
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.				
This building has tight construction with reduced infiltration and a target blower door test range between 3932 and 12845 CFM at 50 pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.				
WARNING - If this building tests below 3932 CFM at 50 pascals, the house must either be provided with a ventilation opening that will				
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.				

 Run Initiation Time:
 04/16/09 10:29:46
 Run Code:
 1239902986

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASB
 Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga B

date
4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN	
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)
Jan	140	1	39	37	0	16	103	1	23
Feb	102	12	30	33	0	15	69	12	15
Mar	89	8	28	37	0	16	52	8	11
Apr	145	14	40	52	7	20	92	7	20
May	347	18	84	140	12	39	207	7	46
Jun	213	21	55	86	13	27	127	8	28
Jul	112	13	33	48	9	18	64	4	14
Aug	71	11	24	37	0	16	34	11	8
Sep	425	24	101	98	10	30	327	13	72
Oct	366	22	89	104	14	31	262	8	58
Nov	139	12	39	40	5	17	99	7	22
Dec	132	1	37	37	0	16	95	1	21
Year	2,282	24			-		1,532	10	

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED		MARGIN					
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)			
Jan	376	294	306	211	186	172	165	108	134			
Feb	249	243	203	142	161	115	108	82	87			
Mar	213	216	173	124	150	101	89	67	72			
Apr	157	193	128	93	130	76	64	63	52			
May	147	212	119	89	140	73	57	71	47			
Jun	117	193	95	78	138	63	39	55	32			
Jul	108	32	87	75	18	61	33	14	27			
Aug	106	32	86	74	18	60	32	14	26			
Sep	102	32	83	71	18	58	31	14				
Oct	123	164	100	79	119		44	45				
Nov	206	236	167	115			91					
		263	289	202	172	164	154					
Dec Year	355 2,259	203										

Annual Totals	Energy	Demand	Cost Co		Cost/sqft	Virtual Rate	
Electricity	750 kWh	14 kW	\$	261	\$	0.03/sqft	\$ 0.35/kWh
Natural Gas	1,353 therms	186 kBtu/hr	\$	1,100	\$	0.11/sqft	\$ 0.81/therm

Total \$ 1,361 \$ 0.14/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASB Page:5 of 5

	Run Initiation Time: 04/16/09 10:30:58	Run Code: 1239903058	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASB	Page:1 of 5

Tassafaronga C1 & C2 Project Title			Date	4/16/2009
FENESTRATION SURFACES		True Cond.		Location/
# Type Are	ea U-Factor ¹ SHG	C ² Azm. Tilt Stat. Glaz		Comments
1 Window Front (N) 263.0 2 Window Front (N) 24.0 3 Window Left (E) 200.0 4 Window Left (E) 24.0 5 Window Rear (S) 262.0 6 Window Rear (S) 24.0 7 Window Right (W) 109.0 8 Window Right (W) 24.0	0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC 0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.580 116-A 0.65 116-B	0 90 New Milgard 0 90 New Double I 90 90 New Milgard 90 90 New Double I 180 90 New Milgard 180 90 New Double I 270 90 New Milgard	Classic Low-E Vinyl Non Metal Clear	Building
Indicate source either from NFRC or Table INTERIOR AND EXTERIOR SI		either from NFRC or Table 116B.		
# Exterior Shade Type	SHGC Window Hgt. Wd.	Overhang Len. Hgt. LExt. RExt	Left Fin Dist. Len. Hgt.	Right Fin Dist. Len. Hgt.
1 Bug Screen 2 Bug Screen 3 Bug Screen 4 Bug Screen 5 Bug Screen 6 Bug Screen 7 Bug Screen 8 Bug Screen	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76			
THERMAL MASS FOR HIGH I Area Type (sf)	MASS DESIGN Thick.Heat Insid (in.) Cap. Cond. R-Va	· · ·	Condition Location	
PERIMETER LOSSES Type Length Slab Perimeter 168	Insulation R-Val. Location None No Insulation	JA IV Reference	Condition Location Comm New Building	
EnergyPro 4.4 by EnergySoft	Run Initiation Time: 04/ User Number: 1005	16/09 10:30:58 Run Code Job Number: 040	e: 1239903058 D3TASB	Page: 2 of 5

Certificate Of Compliance: Residential (Part 3 of 4) Tassafaronga C1 & C2 4/16/2009 Project Title Date **HVAC SYSTEMS** Heating Minimum Cooling Minimum Condition Thermostat Status Location Type Eff Type Eff Type Res HVAC Combined Hydronic see below No Cooling 13.0 SEER Setback **HVAC DISTRIBUTION** Duct Duct Condition **Ducts** Tested? Location Heating Cooling Location R-Value Status Res HVAC Baseboard Ducted Attic 6.0 New No

Hydronic Piping	Pipe	Pipe	Insul.
System Name	Length	Diameter	Thick.
(2) 140K Boilers w/120 Gal S.T.	50	0.50	0.50

WATER HEATING SYSTEM	S
----------------------	---

WATER REATING STSTEM	S Water Hea	ter	# in	Rated Input	Tank Cap.	Condition	Energy Factor	Standby	Tank Insul. R-Value
System Name	Type	Distribution	Syst.	(Btu/hr)	(gal)	Status	or RE	Loss (%)	Ext.
(2) 140K Boilers w/120 Gal S.T.	Large Gas	Central System	1	280,000	120	New	0.92	2.10%	0.0

Multi-Family Central Water Heating Details

	Hot Water Pump)		Hot Water	Piping Ler	ngth (ft)	Add 1/2"	
Control	#	HP	Type	In Plenum	Outside	Buried	Insulation	
Temperature	1	0.0	Standard	0	50	0	_No	

REMARKS

(signature)

COMPLIANCE STATEMENT

This certificate of compliance lists the building features and specifications needed to comply with Title 24, Parts 1 and 6 of the California Code of Regulations, and the administrative regulations to implement them. This certificate has been signed by the individual with overall design responsibility. The undersigned recognizes that compliance using duct design, duct sealing, verification of refrigerant charge and TXVs, insulation installation quality, and building envelope sealing require installer testing and certification and field verification by an approved HERS rater.

Designer of	or Owner (per Business & Professions Code)	Docum	nenta	tion Author	
Name:		Name	:	Chuck Clemons	
Title/Firm:	David Baker + Partners	Title/F	irm:	Energy Calc Co.	
Address:	461 Second St., Loft 127	Addre	ess:	45 Mitchell Blvd. Suite 16	
	San Francisco, CA 94107			San Rafael, CA 94903	
Telephone	: (415) 896-6700 Lic. #:	Telep	hone	: (415)457-0990	
(signature)	(0	date) (signa	ture)		(date)
	ent Agency				
Name: Title/Firm:					
Address:					
Telephone:	:				

	Run Initiation Time: 04/16/09 10:30:58	Run Code: 1239903058	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASB	Page: 3 of 5

(date)

CF-1R (Part 4 of 4)

Tassafaronga C1 & C2 Project Title	4/16/200 Date)9
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items recurred written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise	cal .	
based on the adequacy of the special justification and documentation submitted.	Plar	n Field
Compliance using the Four Cardinal Orientation approach has been used. Project can be built in any Orientation.		
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.		
The DHW System "(2) 140K Boilers w/120 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.		
The DHW System "(2) 140K Boilers w/120 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).		
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must i	include	
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate	ate ventilation.	
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision HERS provider using approved testing and/or verification methods.		· ·
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all In	Plar	n Field
This building has credit for insulation Quality installation. A certified HERS fater must visually verify the installation of all in	isulation.	
This building has tight construction with reduced infiltration and a target blower door test range between 1593 and 5205 CF pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rat		
WARNING - If this building tests below 1593 CFM at 50 pascals, the house must either be provided with a ventilation open increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		

Run Code: 1239903058

Page:4 of 5

Job Number: 0403TASB

Run Initiation Time: 04/16/09 10:30:58

User Number: 1005

EnergyPro 4.4 by EnergySoft

ECON-1

PROJECT NAME
Tassafaronga C1 & C2

DATE 4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN	
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)
Jan	80	0	26	37	0	16	43	0	10
Feb	62	5	22	33	0	15	29	5	6
Mar	59	3	21	37	0	16	22	3	5
Apr	82	6	26	51	4	19	30	1	7
May	166	8	44	103	6	31	63	2	14
Jun	109	9	32	67	7	23	42	2	9
Jul	68	5	23	44	4	18	24	1	5
Aug	51	5	19	37	0	16	14	5	3
Sep	196	10	51	85	8	27	112	2	25
Oct	173	9	46	88	6	27	84	4	19
Nov	79	5	25	39	3	17	40	2	9
Dec	77	0	25	37	0	16	40	0	9
Year	1,203	10	\$ 360	659	8	\$ 241	544	2	\$ 120

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED			MARGIN	
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)
Jan	163	122	133	86	77	70	77	45	63
Feb	110	100	89	57	66	46	53	35	43
Mar	95	90	77	48	61	39	47	29	38
Apr	72	80	58	36	52	29	36	28	29
May	67	87	55	35	57	28	33	31	26
Jun	54	80	43	30	56	25	23	24	19
Jul	50	14	40	29	7	24	21	7	17
Aug	49	14	40	29	7	23	20	7	17
Sep	47	14	38	28	7	22	20	7	16
Oct	57	69	46	31			26	22	21
Nov	92	98	75	46			46	33	
Dec	155	109					72	38	
Year	1,010	122		537					

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	659 kWh	8 kW	\$ 241	\$ 0.06/sqft	\$ 0.37/kWh
Natural Gas	537 therms	77 kBtu/hr	\$ 436	\$ 0.11/sqft	\$ 0.81/therm

Total \$ 677 \$ 0.17/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASB Page:5 of 5

 Run Initiation Time: 04/16/09 10:31:55
 Run Code: 1239903115

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASB
 Page: 1 of 5

Tassafaronga D Project Title			Date	4/16/2009
FENESTRATION SURFACES		True Cond.		Location/
# Type Are	ea U-Factor ¹ SHGC	Azm. Tilt Stat. Glazi	ing Type	Comments
1 Window Front (SW) 144.0 2 Window Front (SW) 48.0 3 Window Left (NW) 61.0 4 Window Rear (NE) 125.0 5 Window Rear (NE) 48.0 6 Window Right (SE) 61.0	0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC 0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC	237 90 New Double N 327 90 New Milgard C 57 90 New Milgard C 57 90 New Double N	Classic Low-E Vinyl Ion Metal Clear Classic Low-E Vinyl Classic Low-E Vinyl Ion Metal Clear Classic Low-E Vinyl	Building Building Building Building Building Building Building
1. Indicate source either from NFRC or Table INTERIOR AND EXTERIOR S	HADING Window	her from NFRC or Table 116B. Overhang	Left Fin	Right Fin
# Exterior Shade Type 1 Bug Screen	SHGC Hgt. Wd. 0.76	Len. Hgt. LExt. RExt.	Dist. Len. Hgt	. Dist. Len. Hgt.
2 Bug Screen 3 Bug Screen 4 Bug Screen 5 Bug Screen 6 Bug Screen	0.76 0.76 0.76 0.76 0.76			
THERMAL MASS FOR HIGH I	MASS DESIGN			
	Thick.Heat Inside (in.) Cap. Cond. R-Val.	JA IV Reference	Condition Location Communication Communicati	
PERIMETER LOSSES Type Length Slab Perimeter 140	Insulation R-Val. Location None No Insulation	JA IV Reference 26-A1	Condition Locating Status Communication Status Communication Communicati	nents
EnergyPro 4.4 by EnergySoft	Run Initiation Time: 04/16 User Number: 1005	/09 10:31:55 Run Code Job Number: 040	: 1239903115 3TASB	Page:2 of 5

	Run Initiation Time: 04/16/09 10:31:55	Run Code: 1239903115	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASB	Page: 3 of 5

(date)

Telephone:

(signature)

(Part 4 of 4)

	4/16/2009 Date			
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require spec written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies				
based on the adequacy of the special justification and documentation submitted.	Plan	Field		
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.				
The DHW System "(2) 80K Boilers w/80 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.				
The DHW System "(2) 80K Boilers w/80 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).				
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.				
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include				
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	ion.			
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field		
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.				
This building has tight construction with reduced infiltration and a target blower door test range between 818 and 2673 CFM at 50 pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.				
WARNING - If this building tests below 818 CFM at 50 pascals, the house must either be provided with a ventilation opening that will increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.				
	+			
	+			
	+			

Run Initiation Time: 04/16/09 10:31:55 Run Code: 1239903115 EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASB Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga D

DATE
4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD		PROPOSED MA				MARGIN	MARGIN		
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)		
Jan	61	0	21	37	0	16	24	0	5		
Feb	49	2	19	33	0	15	16	2	4		
Mar	48	1	18	37	0	16	11	1	2		
Apr	58	3	21	46	3	18	12	0	3		
May	101	4	30	80	4	26	21	0	5		
Jun	72	4	24	58	4	21	14	0	3		
Jul	52	3	19	44	2	18	8	0	2		
Aug	44	2	18	37	0	16	7	2	1		
Sep	115	5	33	64	4	22	51	1	11		
Oct	104	5	31	60	3	21	44	1	10		
Nov	57	3	20	37	1	16	20	1	4		
Dec	59	0	21	37	0	16	22	0	5		
Year	819	5	\$ 276	570	4	\$ 221	249	1	\$ 55		

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED				
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)
Jan	95	66	77	51	42	41	45	24	36
Feb	66	54	54	35	35	29	31	19	25
Mar	59	48	48	30	32	25	29	16	23
Apr	46	42	37	23	27	18	23	15	19
May	43	49	35	22	29	18	21	20	17
Jun	34	43	28	19	30	16	15	13	12
Jul	32	9	26	19	4	15	13	4	11
Aug	32	9	26	19	4	15	13	4	11
Sep	31	9	25	18	4	14	13	4	10
Oct	36	39	29	20	25	16	16	15	13
Nov	55	52	45	28	34	23	26	18	21
Dec	90	58	73	49		40	40	21	
Year	619	66						24	

Annual Totals	Energy	Demand	Cost	Cost/sqft	١	/irtual Rate
Electricity	570 kWh	4 kW	\$ 221	\$ 0.11/sqft	\$	0.39/kWh
Natural Gas	332 therms	42 kBtu/hr	\$ 270	\$ 0.13/sqft	\$	0.81/therm

Total \$ 492 \$ 0.24/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASB Page:5 of 5

	Run Initiation Time: 04/16/09 10:32:43	Run Code: 1239903163	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASE	Page:1 of 5

Tassafaronga E1, E2 & E Project Title	3		Date	4/16/2009
FENESTRATION SURFACES		True Cond.		Location/
# Type Are	ea U-Factor ¹ SHO	GC ² Azm. Tilt Stat. Gla	zing Type	Comments
1 Window Front (N) 545.0 2 Window Front (N) 144.0 3 Window Left (E) 79.0 4 Window Rear (S) 447.0 5 Window Rear (S) 96.0 6 Window Right (W) 131.0	0.390 NFRC 0.37 NFR 0.580 116-A 0.65 116- 0.390 NFRC 0.37 NFR 0.390 NFRC 0.37 NFR 0.580 116-A 0.65 116- 0.390 NFRC 0.37 NFR	B 0 90 New Double C 90 90 New Milgard C 180 90 New Milgard B 180 90 New Double	Classic Low-E Vinyl Non Metal Clear Classic Low-E Vinyl Classic Low-E Vinyl Non Metal Clear Classic Low-E Vinyl	Building Building Building Building Building Building Building
Indicate source either from NFRC or Table INTERIOR AND EXTERIOR SI	LADING	e either from NFRC or Table 116B.		
# Exterior Shade Type	SHGC Window Hgt. Wd.	Overhang Len. Hgt. LExt. REx	Left Fin t. Dist. Len. Hgt	Right Fin Dist. Len. Hgt.
1 Bug Screen 2 Bug Screen 3 Bug Screen 4 Bug Screen 5 Bug Screen 6 Bug Screen	0.76 0.76 0.76 0.76 0.76 0.76 0.76			
THERMAL MASS FOR HIGH I Area Type (sf)	MASS DESIGN Thick.Heat Insi (in.) Cap. Cond. R-V		Condition Locati Status Comm	
PERIMETER LOSSES Type Length Slab Perimeter 292	R-Val. Location None No Insulation	JA IV Reference	Condition Locati Comm	nents
EnergyPro 4.4 by EnergySoft	Run Initiation Time: 04 User Number: 1005	/16/09 10:32:43 Run Cod Job Number: 04	e: 1239903163 03TASE	Page: 2 of 5

EnergyPro 4.4 by EnergySoft

User Number: 1005

Tassafa	aronga E1, E2 &	E3							<u> 16/2009</u>	
Project Titl	е						Da	ate		
HVAC SY	/STEMS									
Location		Heating Type	Minimum Eff	Cooling Type			Minimum Eff	n Conditi Status		Thermostat Type
Res HVAC		Combined Hydron	ic see below	No Coolin	9		13.0 SEEF	R New		Setback
111/40 DI	OTDIDUTION.									
HVAC DI	STRIBUTION			Duct			Duct	Condition	Duct	s
Location		Heating	Cooling	Location			R-Value	Status	Test	ed?
Res HVAC		Baseboard	Ducted	Attic			6.0	New	<u>No</u>	
Hydronic	Piping Ding	Dino	lnoul							
System N	^{Tiping} Pip∈ Name Leng		Insul. Thick.							
		50 0.50	0.50							
WATER	HEATING SYSTEMS			Ra	ted	Tank		Energy		Tank Insul
0	la	Water Heater	S	# in Inp		Cap.	Conditio	n Factor	Standby	R-Value
System N			Distribution	,		(gal)	Status	or RE	Loss (%)	
(3) 140K B	oilers w/240 Gal S.T.	Large Gas C	Central System	1	20,000	240	New		2.10%	0.0
Multi-Fam	nily Central Water He Hot Wate			Hot Water	Dining	Longt	h (ft)	Add 1/2"		
Control	HOL WALE	# HP	Туре	In Plenum	Outsid			Insulation		
Temperatu	ire	1 0.0	Standard	0)	No		
REMARK	' c									
IXEIVIAIXI										
COMPLI	ANCE STATEMENT									
	ate of compliance lists the		nd specifications ne	eded to comp	lv with Tit	tle 24. P	arts 1 and 6	of the Califor	rnia Code of	
Regulations	s, and the administrative re	egulations to impler	nent them. This certi	ficate has be	n signed	by the	individual w	ith overall des	ign responsi	bility.
	igned recognizes that con g envelope sealing require								nstallation q	uality,
`	r Owner (per Business &	J				•	rierto rator	•		
Name:	(per busilless o	x i Tolessions Code)	Documen Name:		utnor « Clemo	ns			
	David Baker + Partners			Title/Firm		y Calc (
Address:	461 Second St., Loft 127	7		Address:			vd. Suite 16	3		
	San Francisco, CA 9410			-			CA 94903			
Telephone:	(415) 896-6700	Lic. #:		Telephor	e: <u>(415)</u> 4	157-099	0			
(signature)			(date) (signature	<i>i)</i>					(date)
(9)			(0.2.10)	, (9	-,					(3.3.12)
Enforceme	nt Agency									
Name: Title/Firm:				-						
Address:				-						
Telephone:				-						
-										
(pignot:::a)			- 4 - الم/	7						
(signature)			(date	,	_	_				
		Run Initiation	Time: 04/16/09 10):32:43	Run Co	ode: 12	39903163			

Job Number: 0403TASE

Page: 3 of 5

CF-1R (Part 4 of 4)

	4/16/2009 Date					
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require swritten justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise cor	•					
pecial Features and Modeling Assumptions he local enforcement agency should pay special attention to the items specified in this checklist. These items require speritten justification and documentation, and special verification to be used with the performance approach. The local inforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise compliance or design that otherwise compliance using the Four Cardinal Orientation approach has been used. Project can be built in any Orientation. Aultiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report. The DHW System "(3) 140K Boilers w/240 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh. The DHW System "(3) 140K Boilers w/240 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR). The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating. This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include opperating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation in the homeowner on the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation are served verification methods. This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation. This building has tight construction with reduced infiltration and a target blower door test range between 3119 and 10189 CFM at 50 pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate. VARNING - If this building tests below 3119 CFM at 50 pascals, the house must either be provided with a ventilation opening that we have the provided with a ventilation opening that we have the provided with a ventilation opening that we have the provide	Plan	Field				
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.						
The DHW System "(3) 140K Boilers w/240 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.						
The DHW System "(3) 140K Boilers w/240 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).						
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.						
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include	e					
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ve	ntilation.					
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field				
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation	on.					
This building has tight construction with reduced infiltration and a target blower door test range between 3119 and 10189 CFM at pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.	t 50					
WARNING - If this building tests below 3119 CFM at 50 pascals, the house must either be provided with a ventilation opening the increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.	at will					

Run Initiation Time: 04/16/09 10:32:43 Run Code: 1239903163 EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASE Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga E1, E2 & E3

DATE 4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN	
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)
Jan	106	1	31	37	0	16	69	1	15
Feb	78	8	25	33	0	15	44	8	10
Mar	60	1	21	37	0	16	23	1	5
Apr	105	10	31	64	8	22	41	2	9
May	242	13	61	168	12	45	73	1	16
Jun	157	15	43	107	14	32	50	1	11
Jul	83	10	26	51	8	19	32	2	7
Aug	52	8	19	37	0	16	15	8	3
Sep	291	17	72	88	10	27	203	7	45
Oct	258	15	65	79	8	25	179	6	39
Nov	91	9	28	36	0	16	55	9	12
Dec	101	1	30	37	0	16	64	1	14
Year	1,623	17	\$ 453	775	14	\$ 266	848	3	\$ 187

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED			MARGIN	
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)
Jan	271	226	221	151	143	123	120	83	98
Feb	180	188	146	98	124	80	82	64	67
Mar	155	169	126	83	116	68	72	53	58
Apr	115	140	94	62	60	51	53	79	43
May	110	164	90	61	109	50	49	55	40
Jun	94	150	76	56	107	46	38	44	31
Jul	89	27	72	55	14	45	34	13	27
Aug	88	26	72	55	14	45	33	12	27
Sep	85	26	69	53	14	43	32	12	26
Oct	97	125	79	57	57	47	40	68	32
Nov	148	183	120	82	123	67	66	60	53
Dec	257	203	209	148	133	121	108	70	88
Year	1,690	226	\$ 1,374	963	143	\$ 783	726	83	\$ 590

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	775 kWh	14 kW	\$ 266	\$ 0.03/sqft	\$ 0.34/kWh
Natural Gas	963 therms	143 kBtu/hr	\$ 783	\$ 0.10/sqft	\$ 0.81/therm

Total \$ 1,049 \$ 0.13/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASE Page:5 of 5

 Run Initiation Time:
 04/16/09 10:33:27
 Run Code:
 1239903207

 EnergyPro 4.4 by EnergySoft
 User Number:
 1005
 Job Number:
 0403TASF
 Page: 1 of 5

Pro	assafare Dject Title	onga	F												Date		4/16	/2009	<u>}</u>	
FE	NESTR/	NOITA	SURF	ACES					Tru	ıe		Con	d.				Locat	tion/		
#	Type			Are	ea L	J-Fact	or ¹	SHGC	Azı	m. T				ing Type				ments		
1 2 3 4 5 6	Window Window Window Window Window Window Window	Front Front Left Rear Rear Right	(NE) (SE) (SW) (SW)	645.0 144.0 103.0 574.0 120.0 230.0	0.580 0.390 0.390 0.580	116-A NFRC NFRC 116-A	0.65 0.37 0.37 0.65	NFRC _ 116-B _ NFRC _ NFRC _ 116-B _ NFRC	57 57 147 237 237 327	90 90 90 90	New New New New New	 	Double N Milgard O Milgard O Double N	Classic Low Ion Metal C Classic Low Classic Low Ion Metal C Classic Low	Clear v-E Vir v-E Vir Clear	nyl nyl	Build Build Build Build Build	ling ling ling ling		
<u>7</u> — — — — —		Right		24.0				116-B	327		New			Ion Metal C		y.	Build			
	ndicate sourc	AND I	EXTER	RIOR S	HADIN	G	Wind			C	Overh	าลทอ]		Left F				Right Fi	
1	Bug Scr	ior Sh een	ade Ty	/pe	SHG 0.7		Hgt.	Wd.	Len	ı. H	gt.	LExt	. RExt.	Dist.	Len	. Hgt.		Dist.	Len.	Hgt.
2	Bug Scr					76											-			
<u>3</u> 4	Bug Scr Bug Scr				0.7												-			
5	Bug Scr				0.7												-			
6	Bug Scr				0.7	76											-			
7	Bug Scr				0.7												_			
																	-			
—																	-			
																	-			
_																_	-			
_																	-			
_						_ :											-			
																	_			
_																	-			
—																	-			
_	-																-			
TH Ty	IERMAL	MASS	S FOR		Thick.	Heat		Inside I. R-Val.	JA	A IV	Refe	renc	ce	Conditi Status		Locatio Comm				
_																				
РЕ Ту	RIMETE	R LO		ength	P-\/al		nsula			\ I\/	Refe	reno	``A	Conditi		Locatio				
	b Perimete	r		302		No Ins			26-A1			. 5110		New		Building	UIIIO			
	o i cilliote			502	140110	140 1113	Jaiatioi							. 1011						
				_	Run	Initiatio	on Tim	ne: 04/16	/09 10:	33:27	7	Rı	ın Code	: 1239903	207					
	EnergyP	ro 4.4 b	y Energy	Soft		User N	umber:	1005			Jo	b Nur	nber: 040	3TASF				P	age:2 of 5	5

	Run Initiation Time: 04/16/09 10:33:27	Run Code: 1239903207	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASF	Page: 3 of 5

(date)

Title/Firm: Address: Telephone:

(signature)

Tassafaronga F

(Part 4 of 4) **CF-1R**

4/16/2009

The local enforcement agency should pay special attention to the items specified in this checklist. These items require spewritten justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification and way reject a building or design that otherwise complibased on the adequacy of the special justification and documentation submitted. Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report. The DHW System "(3) 199K Boilers w/240 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh. The DHW System "(3) 199K Boilers w/240 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR). The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating. This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods. This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation. This building has tight construction with reduced infiltration and a target blower door test range between 3552 and 11603 CFM at 50 pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.		
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted.		Field
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.		11010
·		
	n	
Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
WARNING - If this building tests below 3552 CFM at 50 pascals, the house must either be provided with a ventilation opening that will		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		

 Run Initiation Time:
 04/16/09 10:33:27
 Run Code:
 1239903207

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASF
 Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga F

date
4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN	
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)
Jan	115	1	33	37	0	16	78	1	17
Feb	84	11	27	33	0	15	51	11	11
Mar	75	7	25	37	0	16	38	7	8
Apr	136	12	38	69	9	23	67	3	15
Мау	315	16	77	195	13	51	119	3	26
Jun	211	19	54	117	15	34	94	3	21
Jul	104	11	31	52	8	19	52	3	12
Aug	68	10	23	37	0	16	31	10	7
Sep	387	21	93	95	11	29	291	10	64
Oct	335	19	82	88	12	27	247	8	54
Nov	120	11	34	36	0	16	84	11	18
Dec	108	1	32	37	0	16	71	1	16
Year	2,059	21	\$ 549	835	15	\$ 279	1,224	6	\$ 269

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED			MARGIN	
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)
Jan	306	258	248	168	163	136	138	96	112
Feb	201	214	164	110	140	89	92	73	74
Mar	173	190	141	92	130	74	82	60	66
Apr	129	155	105	68	69	55	62	86	50
May	125	186	101	66	122	54	58	64	47
Jun	107	170	87	61	120	50	46	50	37
Jul	101	30	82	60	16	49	41	15	34
Aug	100	30	81	59	15	48	41	15	33
Sep	96	30	78	57	15	46	39	15	32
Oct	110	140	89	62	64	51	47	76	39
Nov	168	208	136	94	139	76	74	69	60
Dec	288	231	234	169	150	137	119	80	96
Year	1,904	258	\$ 1,548	1,065	163	\$ 866	839	96	\$ 682

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	835 kWh	15 kW	\$ 279	\$ 0.03/sqft	\$ 0.33/kWh
Natural Gas	1,065 therms	163 kBtu/hr	\$ 866	\$ 0.10/sqft	\$ 0.81/therm

Total \$ 1,145 \$ 0.13/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASF Page:5 of 5

	Run Initiation Time: 04/16/09 10:42:26	Run Code: 1239903746	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASG	Page:1 of 5

Tassafaronga G Project Title			Date	4/16/2009
FENESTRATION SURFACES		True Cond.		Location/
# Type Are	ea U-Factor ¹ SH		Glazing Type	Comments
1 Window Front (NW) 493.0 2 Window Front (NW) 120.0 3 Window Left (NE) 102.0 4 Window Rear (SE) 391.0 5 Window Rear (SE) 72.0 6 Window Right (SW) 104.0	0.390 NFRC 0.37 NFR 0.580 116-A 0.65 116 0.390 NFRC 0.37 NFR 0.390 NFRC 0.37 NFR 0.580 116-A 0.65 116 0.390 NFRC 0.37 NFR	FB 328 90 New Do RC 58 90 New Mil RC 148 90 New Mil FB 148 90 New Do	gard Classic Low-E Vinyl uble Non Metal Clear gard Classic Low-E Vinyl gard Classic Low-E Vinyl uble Non Metal Clear gard Classic Low-E Vinyl	Building Building Building Building Building Building
1. Indicate source either from NFRC or Table		ce either from NFRC or Table 116E	3. Left Fin	Right Fin
# Exterior Shade Type	SHGC Hgt. Wd			gt. Dist. Len. Hgt.
1 Bug Screen 2 Bug Screen 3 Bug Screen 4 Bug Screen 5 Bug Screen 6 Bug Screen	0.76 0.76 0.76 0.76 0.76 0.76			
THERMAL MASS FOR HIGH I Area Type (sf)		side Val. JA IV Reference	Condition Loca Status Com	tion/ ments
PERIMETER LOSSES Type Length Slab Perimeter 272		JA IV Reference	Condition Loca Status Com	ments
EnergyPro 4.4 by EnergySoft	Run Initiation Time: 0 User Number: 1005		Code: 1239903746 er: 0403TASG	Page: 2 of 5

	Run Initiation Time: 04/16/09 10:42:26	Run Code: 1239903746	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASG	Page: 3 of 5

(date)

Address: Telephone:

(signature)

Tassafaronga G

(Part 4 of 4) **CF-1R**

4/16/2009

Project Title Date		
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted.		Field
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.		11010
The DHW System "(2) 199K Boilers w/240 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.		
The DHW System "(2) 199K Boilers w/240 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).		
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n	
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
This building has tight construction with reduced infiltration and a target blower door test range between 2605 and 8509 CFM at 50 pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.		
WARNING - If this building tests below 2605 CFM at 50 pascals, the house must either be provided with a ventilation opening that will		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		

 Run Initiation Time:
 04/16/09 10:42:26
 Run Code:
 1239903746

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASG
 Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga G

date
4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN		
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	
Jan	100	1	30	37	0	16	63	1	14	
Feb	75	7	24	33	0	15	41	7	9	
Mar	66	4	23	37	0	16	29	4	6	
Apr	99	9	30	41	3	17	58	6	13	
May	229	12	58	75	6	24	154	6	34	
Jun	145	13	40	61	8	21	85	5	19	
Jul	82	8	26	37	0	16	45	8	10	
Aug	53	7	20	37	0	16	16	7	3	
Sep	270	15	67	58	6	21	212	9	47	
Oct	239	13	61	69	8	23	170	5	38	
Nov	87	8	27	37	1	16	50	7	11	
Dec	95	1	29	37	0	16	58	1	13	
Year	1,541	15		559	8	\$ 219	981	6	\$ 216	

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED		MARGIN			
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	
Jan	243	193	197	136	122	110	107	71	87	
Feb	162	160	132	92	105	75	70	55	57	
Mar	139	143	113	82	99	66	58	45	47	
Apr	104	117	84	63	84	51	41	33	33	
May	99	139	80	60	93	49	38	47	31	
Jun	82	128	67	52	91	42	30	36	25	
Jul	77	23	63	50	12	41	27	10	22	
Aug	77	22	62	50	12	41	27	10	22	
Sep	74	22	60	48	12	39	26	10	21	
Oct	86	105	70	53	64	43	33	42	27	
Nov	134	156	109	73	104	60	60	52	49	
Dec	230	173	187	128	113	104	102	60	83	
Year	1,506	193	\$ 1,224	887	122	\$ 721	618	71	\$ 503	

Annual Totals	Energy	Demand	Cost	Cost/sqft	١	/irtual Rate
Electricity	559 kWh	8 kW	\$ 219	\$ 0.03/sqft	\$	0.39/kWh
Natural Gas	887 therms	122 kBtu/hr	\$ 721	\$ 0.11/sqft	\$	0.81/therm

Total \$ 940 \$ 0.14/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASG Page:5 of 5

 Run Initiation Time: 04/16/09 10:34:46
 Run Code: 1239903286

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASH
 Page: 1 of 5

Tassafaronga H Project Title			Date	4/16/2009
FENESTRATION SURFACES	,	True Cond.		Location/
# Type Are	ea U-Factor ¹ SHGC	² Azm. Tilt Stat. Glaz		Comments
1 Window Front (SE) 1,170.0 2 Window Front (SE) 240.0 3 Window Left (SW) 169.0 4 Window Rear (NW) 964.0 5 Window Rear (NW) 168.0 6 Window Right (NE) 237.0 7 Window Right (NE) 24.0	0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC 0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.390 NFRC 0.37 NFRC 0.580 116-A 0.65 116-B 0.580 116-A 0.65 116-B	148 90 New Double N 238 90 New Milgard C 328 90 New Milgard C 328 90 New Double N 58 90 New Milgard C	Classic Low-E Vinyl Ion Metal Clear Classic Low-E Vinyl Classic Low-E Vinyl Ion Metal Clear Classic Low-E Vinyl Ion Metal Clear Ion Metal Clear	Building Building Building Building Building Building Building Building
1. Indicate source either from NFRC or Table		her from NFRC or Table 116B.		
INTERIOR AND EXTERIOR SI	vviridow	Overhang	Left Fin	Right Fin
# Exterior Shade Type 1 Bug Screen 2 Bug Screen 3 Bug Screen 4 Bug Screen 5 Bug Screen 6 Bug Screen 7 Bug Screen	SHGC Hgt. Wd. 0.76 0.76 0.76 0.76 0.76 0.76 0.76 <	Len. Hgt. LExt. RExt.	Dist. Len. Hgt	. Dist. Len. Hgt.
THERMAL MASS FOR HIGH I Area Type (sf)	MASS DESIGN Thick. Heat Inside (in.) Cap. Cond. R-Val.	JA IV Reference	Condition Location Status Comm	
PERIMETER LOSSES Type Length Slab Perimeter 514	Insulation R-Val. Location None No Insulation	JA IV Reference 26-A1	Condition Location Communication Status Building	
EnergyPro 4.4 by EnergySoft	Run Initiation Time: 04/16 User Number: 1005	/09 10:34:46 Run Code Job Number: 040	: 1239903286 3TASH	Page: 2 of 5

	Run Initiation Time: 04/16/09 10:34:46	Run Code: 1239903286	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASH	Page: 3 of 5

(date)

Address: Telephone:

(signature)

Tassafaronga H

(Part 4 of 4) **CF-1R**

4/16/2009

Project Title Date		
Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a		Field
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.	Plan	1 1010
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n.	
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
, , , , , , , , , , , , , , , , , , , ,		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		

 Run Initiation Time:
 04/16/09 10:34:46
 Run Code:
 1239903286

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASH
 Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga H

DATE
4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN			
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)		
Jan	166	2	44	37	0	16	129	2	28		
Feb	117	17	34	33	0	15	84	17	18		
Mar	94	11	29	37	0	16	57	11	13		
Apr	181	20	48	59	7	21	122	14	27		
May	478	27	113	154	13	42	324	14	71		
Jun	298	31	74	86	18	27	212	13	47		
Jul	141	19	39	37	0	16	104	19	23		
Aug	70	18	23	37	0	16	33	18	7		
Sep	575	35	135	114	16	33	461	19	101		
Oct	505	29	119	176	24	47	329	6	72		
Nov	144	18	40	49	7	19	95	11	21		
Dec	155	1	42	37	0	16	118	1	26		
Year	2,924	35	\$ 739	856	24	\$ 284	2,069	11	\$ 455		

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED			MARGIN		
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	
Jan	506	444	411	272	282	221	234	162	190	
Feb	332	369	270	179	244	145	153	125	125	
Mar	283	330	230	159	227	129	124	102	101	
Apr	210	271	170	127	126	103	83	145	67	
May	203	318	165	125	215	101	78	104	64	
Jun	176	295	143	113	211	92	63	83	51	
Jul	167	51	136	110	28	89	57	24	47	
Aug	165	51	134	109	28	88	56	23	46	
Sep	159	51	129	104	28	85	55	23	44	
Oct	180	244	146	113	93	92	67	151	55	
Nov	272	360	221	145	241	118	127	119	103	
Dec	475	398	386	248	259	201	228	139		
Year	3,127	444		1,802			1,325			

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	856 kWh	24 kW	\$ 284	\$ 0.02/sqft	\$ 0.33/kWh
Natural Gas	1,802 therms	282 kBtu/hr	\$ 1,465	\$ 0.09/sqft	\$ 0.81/therm

Total \$ 1,749 \$ 0.11/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASH Page:5 of 5

Project Title			Dat	e 4/16/2009
FENESTRATION SURFACES		Truo	Cond.	Location/
# Type Are	ea U-Factor ¹	True SHGC ² Azm. Tilt	Stat. Glazing Type	Comments
1 Window Front (SE) 748.0 2 Window Front (SE) 168.0 3 Window Left (SW) 128.0 4 Window Left (SW) 24.0 5 Window Rear (NW) 643.0 6 Window Rear (NW) 120.0 7 Window Right (NE) 95.0	0.390 NFRC 0.37 0.580 116-A 0.65 0.390 NFRC 0.37 0.580 116-A 0.65 0.390 NFRC 0.37 0.580 116-A 0.65	NFRC 148 90 New 116-B 148 90 New NFRC 238 90 New 116-B 238 90 New NFRC 328 90 New 116-B 328 90 New	Double Non Metal Clear Milgard Classic Low-E Vii Double Non Metal Clear Milgard Classic Low-E Vii Double Non Metal Clear	Building nyl Building Building Building nyl Building Building Building
Indicate source either from NFRC or Table	e 116A. 2. Indicate	source either from NFRC or Ta	able 116B.	
INTERIOR AND EXTERIOR S	HADING Wind	dow Over	hang Left l	Fin Right Fin
# Exterior Shade Type 1	SHGC Hgt. 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.	Wd. Len. Hgt.	LExt. RExt. Dist. Ler	n. Hgt. Dist. Len. Hgt.
Type (sf)	Thick. Heat (in.) Cap. Cond.	Inside R-Val. JA IV Refe		Location/ Comments
PERIMETER LOSSES Type Length Slab Perimeter 364		ion JA IV Refe	Condition Status New	Location/ Comments Building
EnergyPro 4.4 by EnergySoft	Run Initiation Tim User Number:	e: 04/16/09 10:35:32 1005 Jo	Run Code: 1239903332 bb Number: 0403TASI	Page: 2 of 5

	Run Initiation Time: 04/16/09 10:35:32	Run Code: 1239903332	
EnergyPro 4.4 by EnergySoft	User Number: 1005	Job Number: 0403TASI	Page: 3 of 5

(date)

Address: Telephone:

(signature)

Tassafaronga I

(Part 4 of 4) **CF-1R**

4/16/2009

Project Title Date		
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted.		Field
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.		11010
The DHW System "(3) 199K Boilers w/375 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.		
The DHW System "(3) 199K Boilers w/375 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).		
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n	
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
This building has tight construction with reduced infiltration and a target blower door test range between 3919 and 12802 CFM at 50 pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.		
WARNING - If this building tests below 3919 CFM at 50 pascals, the house must either be provided with a ventilation opening that will		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		

 Run Initiation Time:
 04/16/09 10:35:32
 Run Code:
 1239903332

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASI
 Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga I

A/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED			MARGIN	
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)
Jan	124	1	35	37	0	16	87	1	19
Feb	90	11	28	33	0	15	57	11	13
Mar	78	7	25	37	0	16	41	7	9
Apr	135	13	38	51	5	19	84	8	18
May	329	18	80	114	9	33	215	9	47
Jun	209	20	54	77	12	25	132	8	29
Jul	106	12	31	42	6	17	64	7	14
Aug	68	11	23	37	0	16	31	11	7
Sep	401	22	96	93	12	28	308	11	68
Oct	349	20	85	145	16	40	204	4	45
Nov	116	12	33	45	6	18	70	6	15
Dec	117	1	34	37	0	16	80	1	18
Year	2,121	22	\$ 563	749	16	\$ 261	1,372	7	\$ 302

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED			MARGIN	
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Peak Use Demand (therms) (kBtu/hr)		Cost (\$)
Jan	346	286	281	199	183	162	147	103	119
Feb	230	237	187	136	158	111	94	79	77
Mar	199	212	162	125	147	101	74	65	60
Apr	150	174	122	102	96	83	47	78	38
May	144	207	117	100	139	82	43	68	35
Jun	123	189	100	90	137	74	32	52	26
Jul	117	35	95	89	21	72	28	14	23
Aug	115	34	94	88	20	72	27	14	22
Sep	111	34	90	84	20	68	27	14	22
Oct	127	156	103	91	72	74	35	84	29
Nov	191	231	155	114	156	93	77	75	63
Dec	326	256	265	184	168		143		
Year	2,179	286		1,403					

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	749 kWh	16 kW	\$ 261	\$ 0.03/sqft	\$ 0.35/kWh
Natural Gas	1,403 therms	183 kBtu/hr	\$ 1,140	\$ 0.11/sqft	\$ 0.81/therm

Total \$ 1,401 \$ 0.14/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASI Page:5 of 5

Certificate Of Compliance : Residential (Part 1 of 4) Tassafaronga Pasta Factory Res. Units 4/16/2009 **Project Title** Date Oakland Project Address Building Permit # Energy Calc Co. Documentation Author (415)457-0990 Plan Check/Date Telephone EnergyPro Compliance Method CA Climate Zone 03 Field Check/Date Compliance **TDV** Standard **Proposed** Margin (kBtu/sf-yr) Design Design 6.36 9.15 -2.79**Space Heating** 2.65 4.41 1.76 **Space Cooling** 1.08 0.31 0.76 **Fans** 7.21 14.84 7.63 **Domestic Hot Water** 0.74 0.74 0.00 **Pumps** 27.43 19.17 8.26 **Totals** 30.1% Percent better than Standard: DING COMPLIES - HERS VERIFICATION REQUIRED **Building Type:** Single Family 16,254 ft² Addition **Total Conditioned Floor Area:** n/a ft2 Multi Family Existing + Add/Alt **Existing Floor Area:** 1,200 ft² **Building Front Orientation:** (SE) 148 deg Raised Floor Area: 6,447 ft² **Natural Gas Fuel Type:** Slab on Grade Area: 9.5 ft Fenestration: **Average Ceiling Height:** 3,627 ft² Area: Avg. U: 0.65 **Number of Dwelling Units:** 20.00 Ratio: 22.3% Avg. SHGC: 0.40 **Number of Stories:** 2 **BUILDING ZONE INFORMATION** # of **Thermostat** Vent Zone Name Floor Area Volume Units Zone Type Type Hgt. Area Conditioned Res HVAC 16.254 154.413 20.00 Setback **OPAQUE SURFACES** Insulation Act. Gains Condition Area U-Fac. Cav. Cont. Tilt Type Frame Azm. Status JA IV Reference Location / Comments Y/NLiving Units Roof booW 10.297 0.036 R-30 R-0.0 0 02-A9 New Metal R-13 R-0.0 90 Living Units Wall 5,204 0.217 New 11-A3 90 28-A3 **Living Units** Door None 400 0.500 Insul R-0.0 New 90 Living Units Wall None 324 0.169 None R-13.0 148 New 13-D5 Wall None 1,625 0.169 None R-13.0 90 New 13-D5 Living Units 328 90 Wall None 632 0.169 None R-13.0 New 13-D5 Living Units Wall None 1.791 0.169 None R-13.0 90 New 13-D5 Living Units XNew Floor Wood 1,200 0.048 R-19 R-0.0 180 21-A4 Living Units

 Run Initiation Time:
 04/16/09 10:38:17
 Run Code:
 1239903497

 EnergyPro 4.4 by EnergySoft
 User Number:
 1005
 Job Number:
 0403TASPFR
 Page:1 of 5

Pro	assafar oject Title	onga	Past	а ғас	tory I	≺es. ।	Jnits	3						Dat		4/16/	2009)	
FE	NESTR/	ATION	SURI	FACES					. Tru	Ie.	Con	d				Locati	on/		
#	Туре			Are	ea (J-Fact	or ¹	SHGC	² Azı	n. Tilt			ing Type	Э		Comm			
1 2 3	Window Window Window	Front Left Rear	(SE) (SW) (NW)	<u>1,415.0</u>	0.650	NFRC	0.40	NFRC _ NFRC _ NFRC	148 238 328	90 New 90 New 90 New	<u>/</u>	Dbl/Mtl T	herm Brk herm Brk herm Brk	Low-E		Living Living	Units Units Units		
4	Window	Right		1,458.0		NFRC			58	90 New			herm Brk				Units		
_																			
		:41 5-	NEE							NIEDO T		IOD							
IN	ndicate sourc	AND E	XTE	RIOR S			Win	dow_	ner from	NFRC or To]		Left				ight Fir	<u>1</u>
# 1	Exter Bug Scr	ior Sha een	ade T	уре	SHG 0.	3C 76	Hgt.	Wd.	Len	. Hgt.	LExt	. RExt.	Dist	t. Ler	n. Hgt.		Dist.	Len.	Hgt
2	Bug Scr Bug Scr	een			0	.76 .76							_						
<u>3</u>	Bug Scr					76													
_											_								
_																 			
Tŀ	IERMAL	MASS	FOR		MASS Thick		GN	Inside					Condi	ition	Locatio	nn/			
Ту	rpe			(sf)			Cond	I. R-Val.		VIV Refe	erend	ce	Stati		Comm				
					<u> </u>														
	ERIMETE pe	R LOS		Length	R-Va		nsula Loca		JA	\ IV Refe	erenc	ce	Condi		Locatio				
_	b Perimete	r		326	None	No Ins	ulatior	า	26-A1				New		Living U	nits			
					Run	Initiation	on Tim	ne: 04/16	/09 10:	38:17	Rı	ın Code	: 123990	3497					
	EnergyP	ro 4.4 by	/ Energy	ySoft		User N	umber:	1005		J	ob Nur	nber: 040	3TASPFR				Pa	ge:2 of 5	<u> </u>

EnergyPro 4.4 by EnergySoft

User Number: 1005

Tassafaror Project Title	nga Pasta Fa	ctory Res. U	nits					4/ Date	16/2009)
HVAC SYSTI	EMS									
Lasstian		Heating	Minimum	Coo			Minimu	_		Thermostat
Location		Type Combined Undren	Eff	Туре			Eff	Status		Type
Res HVAC		Combined Hydron	ic see below	<u>NO C</u>	ooling		13.0 SEE	<u>New</u>		Setback
HVAC DISTR	RIBUTION		·	Duct			Duct	Condition	Duc	
Location		Heating	Cooling	Loca	tion			e Status		ted?
Res HVAC		Baseboard	Ducted	Attic			6.0	New	<u>No</u>	
Hydronic Pipi	na -			_						
System Name	Pipe		Insul. Thick.							
(3) 399K Boilers Gal S.T.		50 0.50	0.50							
WATER HEA	TING SYSTEM	_			Rated	Tank		Energy		Tank Insu
System Name	Э	Water Heater Type	Distribution	# in Syst.	Input (Btu/hr	Cap.) (gal)	Conditi Status	on Factor or RE	Standby Loss (%)	
(3) 399K Boilers	s w/200 Gal S.T.	Large Gas C	Central System	1	1,197,0	000 200	New	0.92	2.10%	0.0
Multi-Family C	Central Water He Hot Wat			Hot W	/ater Pip	oing Leng	th (ft)	Add 1/2"		
Control		# HP	Туре	In Plen			Buried	Insulation		
Temperature		1	Standard		<u> </u>	50	0	No No		
REMARKS										
This certificate of Regulations, and The undersigned	I the administrative r I recognizes that cor	e building features a egulations to impler npliance using duct	and specifications ne ment them. This cert design, duct sealing d certification and fie	tificate ha g, verifica	is been sig tion of refi	gned by the rigerant cha	individual varge and TX	with overall dealy.	sign respons	sibility.
Designer or Ow	ner (per Business &	& Professions Code)	Docu	ımentatio	n Author				
Name:				Nam		huck Cleme				
	d Baker + Partners	7		_		nergy Calc		10		
	Second St., Loft 12 Francisco, CA 9410			_ Add		5 Mitchell B an Rafael,		16		
Telephone: (415		Lic. #:		_ _ Tele		115)457-099				
(signature)			(date	e) (sigr	nature)					(date)
Enforcement Ag	jency									
Name: Title/Firm:				-						
Address:				_						
·				_						
				_						
(signature)			(date	9)						
		Run Initiation	Time: 04/16/09 10	0:38:17	Ru	n Code: 1	239903497	•		

Job Number: 0403TASPFR

Page:3 of 5

Tassafaronga Pasta Factory Res. Units

(Part 4 of 4) **CF-1R**

4/16/2009

Project Title Date		
Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted.		Field
Multiple Dwelling Units are served by a common water heater. Verify DHW details on Part 3 of this report.	1 10.11	1 1010
The DHW System "(3) 399K Boilers w/200 Gal S.T." is a Large Gas water heater with Pilot Loss = 0 btuh.		
The DHW System "(3) 399K Boilers w/200 Gal S.T." includes a Solar System with a 50.0% Solar Fraction (see CF-SR).		
The HVAC System "Res HVAC" is a Combined Hydronic System that uses a Boiler for DHW and Space Heating.		
This house has reduced infiltration and/or mechanical ventilation. The homeowner's manual provided by the builder must include		
operating instructions for the homeowner on how to use operable windows and/or mechanical ventilation to achieve adequate ventilation	n.	
HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a HERS provider using approved testing and/or verification methods.	Plan	Field
This building has credit for Insulation Quality Installation. A certified HERS rater must visually verify the installation of all Insulation.		
This building has tight construction with reduced infiltration and a target blower door test range between 6384 and 20855 CFM at 50 pascals. The blower door test must be performed using the ASTM Standard Test Method for Determining Air Leakage Rate.		
WARNING - If this building tests below 6384 CFM at 50 pascals, the house must either be provided with a ventilation opening that will		
increase the infiltration to this level (SLA=1.5) OR mechanical supply ventilation must be provided.		

 Run Initiation Time:
 04/16/09 10:38:17
 Run Code:
 1239903497

 EnergyPro 4.4 by EnergySoft
 User Number: 1005
 Job Number: 0403TASPFR
 Page:4 of 5

ECON-1

PROJECT NAME
Tassafaronga Pasta Factory Res. Units

DATE 4/16/2009

Rate: PG&E A-1 Fuel Type: Electricity

		STANDARD			PROPOSED		MARGIN			
	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	Energy Use (kWh)	Peak Demand (kW)	Cost (\$)	
Jan	201	2	52	74	0	24	127	2	28	
Feb	152	22	42	67	0	23	86	22	19	
Mar	142	14	39	74	0	24	68	14	15	
Apr	288	24	71	143	21	39	146	3	32	
May	686	32	159	455	31	108	232	1	51	
Jun	507	36	120	292	33	72	215	3	47	
Jul	232	22	59	150	19	41	83	3	18	
Aug	191	20	50	74	0	24	117	20	26	
Sep	853	40	196	322	36	79	531	5	117	
Oct	701	40	162	249	26	63	452	14	99	
Nov	257	21	65	79	7	25	178	13	39	
Dec	188	2	49	74	0	24	114	1	25	
Year	4,398	40	\$ 1,064	2,051	36	\$ 547	2,347	5	\$ 517	

Rate: PG&E G-NR1 Fuel Type: Natural Gas

		STANDARD			PROPOSED			MARGIN	
	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Peak Demand (kBtu/hr)	Cost (\$)	Energy Use (therms)	Cost (\$)	
Jan	543	476	442	490	349	398	53	126	43
Feb	364	384	296	324	284	263	41	99	33
Mar	326	339	265	275	265	223	51	74	41
Apr	252	280	205	195	241	159	57	40	47
May	249	351	202	168	265	137	80	86	65
Jun	217	305	176	117	240	95	100	65	81
Jul	208	66	169	101	30	82	107	36	87
Aug	205	65	167	99	30	81	106	35	86
Sep	198	65	161	96	30	78	102	35	83
Oct	219	238		128	211		91	27	
Nov	305	372	248	271	283	220	34	89	
Dec	507	413		492	312		14	101	
Year	3,593	476		2,757	349		837		

Annual Totals	Energy	Demand	Cost	Cost/sqft	Virtual Rate
Electricity	2,051 kWh	36 kW	\$ 547	\$ 0.03/sqft	\$ 0.27/kWh
Natural Gas	2,757 therms	349 kBtu/hr	\$ 2,241	\$ 0.14/sqft	\$ 0.81/therm

Total \$ 2,788 \$ 0.17/sqft

The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual.

EnergyPro 4.4 by EnergySoft User Number: 1005 Job Number: 0403TASPFR Page:5 of 5